Interrelationships between juvenile salmonids—coho salmon, *Oncorhynchus kisutch*; chinook salmon, *O. tshawytscha*; and steelhead, *Salmo gairdneri*—and nonsalmonid fish were studied in the Columbia River estuary during 1980. Nonsalmonid species were numerically dominant in pelagic and intertidal areas of the lower estuary. In pelagic and intertidal areas of the upper estuary, juvenile salmonids, particularly subyearling chinook salmon were proportionally important. Nonsalmonid species commonly associated with juvenile subyearling chinook salmon included American shad, *Alosa sapidissima*; Pacific herring, *Clupea harengus pallasi*; northern anchovy, *Engraulis mordax*; surf smelt, *Hypomesus pretiosus*; longfin smelt, *Spirinchus thaleichthys*; peamouth, *Mylocheilus caurinus*; threespine stickleback, *Gasterosteus aculeatus*; shiner perch, *Cymatogaster aggregata*; Pacific staghorn sculpin, *Leptocottus armatus*; and starry flounder, *Platichthys stellatus*. Commonly associated species were generally defined only in reference to subyearling chinook salmon because, of all the juvenile salmonids, subyearling chinook salmon were clearly the most abundant and available in sizable numbers for the longest time. Predation on juvenile salmonids by nonsalmonids and other juvenile salmonids was insignificant. Significant diet overlap occurred among subyearling and yearling chinook salmon, coho salmon, and steelhead during the spring. American shad, threespine stickleback, and starry flounder had significant diet overlaps with juvenile salmonids.

The Columbia River system is an important producer of Pacific salmon (*Oncorhynchus* spp.) and steelhead, *Salmo gairdneri*, in North America (Chaney and Perry 1976; Bohn and Stockley 1981). Salmonids (wild and hatchery) originating from the Columbia River system provide fish for both river and ocean fisheries (recreational and commercial). Historically, the world's largest migration of adult chinook salmon, *O. tshawytscha*, occurred in the Columbia River (Van Hyning 1973). Dam construction, poor logging and agricultural practices, overfishing, and pollution have severely reduced adult salmonid returns to the Columbia River system. Efforts to improve the runs, such as large hatchery releases of juveniles, collection and transportation of juveniles at selected dams, and the installation of dam spillway deflectors to reduce nitrogen supersaturation have enhanced adult returns, but failed to increase them to historical levels. There is concern by some resource managers that significant losses of juvenile salmonids may be occurring in the ocean and/or estuary. They feel these losses may be due to predation or competition for the same food organisms by nonsalmonid fish.

No published information is known to exist on the interrelationships between juvenile salmonids and nonsalmonid fish throughout the Columbia River estuary; this paper helps fill that void. Our objectives were to document the following: 1) The proportional abundance of salmonids and nonsalmonids in various estuarine habitats, 2) the nonsalmonid fish species associated with juvenile salmonids, 3) the length characteristics of nonsalmonids and juvenile salmonids, 4) predation on salmonids, and 5) prey consumption and possible competition between salmonids and nonsalmonids in similar habitats.

METHODS AND MATERIALS

Study Area

The study was carried out in the Columbia River estuary between River Kilometers 3 and 62 (Fig. 1). The estuary is a drowned river mouth with delta islands in the upper portion. Salinity intrusion in the estuary fluctuates considerably because of changing river flows and tide conditions. Vertical salinity gradients exist in parts of the estuary, with the highest salinities in deep water near the bottom (Neal 1972; McConnell et al. 1981).

We divided the estuary into upper and lower areas (Fig. 1); these two areas were further divided into pelagic and intertidal habitats. Pelagic and intertidal areas of the upper estuary were classified as freshwater. The lower estuary was classified as a mixed zone, with salinities ranging from 0 to 33‰ depend-
Sampling

Two beach seines were used to sample in intertidal areas. The seines were 50 m long; one was 4.0 m and the other 3.4 m deep at their deepest points. Both nets contained panels with the following mesh sizes (stretched): 19.0, 12.7, and 9.5 mm. Knotless mesh was used in the bunt to minimize scaling of fish (this was also true in the purse seine). The fishing method was similar to that described by Sims and Johnsen (1974). Beach seining was done at various tide stages.

A 200 m long by 9.8 m deep purse seine was employed to collect pelagic species. Mesh sizes (stretched) in the seine included 19.0 and 12.7 mm. Purse seine sets were made for 5 min in an upstream direction during various stages of the tide.

Collapsible hoop nets and trawl nets were also used, but captured comparatively few salmonids.

Monthly sampling throughout the estuary was performed from February 1980 through January 1981. The effort involved 11 beach seine and 16 purse seine sites (Fig. 1). Five intertidal sampling stations (beach seine) were in the upper estuary and six in the lower. Eight of the pelagic sampling sites (purse seine) were in the upper estuary and eight in the lower. Before each sampling effort, water temperature, conductivity, and salinity were recorded using a Beckman, Model RS5-3 salinometer and probe.

Fish were identified and enumerated, and a random subsample of up to 50 fish of each species or stock was measured to the nearest millimeter (total length) and weighed to the nearest gram. Subyearling and yearling chinook salmon were separated using length-frequency histograms. The number and total weight were recorded for those species with over 50 individuals in a single sample effort.

A representative subsample of five individuals of each species was selected from each purse seine and beach seine set for stomach analysis. Fish taken for stomach analysis were injected with a 20% buffered Formalin solution soon after capture to preserve stomach contents. Injected fish were weighed and measured at the laboratory. Stomachs were then removed from the fish and placed in vials containing 70% ethyl alcohol.

Fish stomach contents were examined in a watch glass using a 10X binocular dissecting microscope. Food organisms were identified to the lowest practical taxon and weighed to the nearest 0.0001 g after blotting and air drying for 10 min.

Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.
Data Analysis

Because subyearling chinook salmon were the most frequently caught salmonids and were available in sizable numbers from March through September, we chose to compare all other species (including other juvenile salmonid species) in relation to them. We assigned one of three abundance categories: Common, occasional, or uncommon. A common species occurred in 50% or more of the sampling efforts (in which juvenile salmon were captured) and equaled 50% or more of the total number of subyearling chinook salmon captured in that habitat. An occasional species occurred in more than 20% of the sampling efforts and equaled more than 10% of the total number of subyearling chinook salmon. An uncommon species occurred in 20% or less of the sampling efforts and equaled 10% or less of the total number of subyearling chinook salmon.

Fish were not separated by age-classes, except yearling and subyearling chinook salmon.

Food habit data from April through September were combined into two periods—spring (April through June) and summer (July through September). Diet descriptions and comparisons are not presented for February, March, and October. Principal prey items for each fish species were determined by calculating the Index of Relative Importance (IRI) modified from Pinkas et al. (1971):

$$\text{IRI} = (N + W)F$$

where $N =$ numerical percentage of a prey item

$W =$ weight percentage of a prey item

$F =$ frequency of occurrence percentage of a prey item.

Any prey item with an IRI value >50 was considered a principal prey for a given species. Digested food was not included in this calculation.

To assess possible food competition, diet overlap of associated species was measured using the formula developed by Morisita (1959) and modified by Horn (1966):

$$\hat{C}_\lambda = \frac{2 \sum_{i,j=1}^{s} X_i \cdot Y_j}{\sum_{i=1}^{s} X_i^2 + \sum_{j=1}^{s} Y_j^2}$$

where $\hat{C}_\lambda =$ overlap coefficient

$s =$ number of food categories

$X_i =$ proportion of the total diet of fish species X contributed by food category i (by biomass)

Values of \hat{C}_λ range from 0 to 1, with 0 indicating no overlap and 1 indicating complete diet overlap. A value of 0.6 is considered significant diet overlap (Zaret and Rand 1971).

RESULTS

Juvenile chinook salmon (subyearling and yearling); coho salmon, *O. kisutch*; and steelhead were the most common salmonids in the estuary (Table 1). Subyearling chinook salmon were the most abundant and were available in quantity for the longest time (March through September). Catches of juvenile chum salmon, *O. keta*; sockeye salmon, *O. nerka*; and cutthroat trout, *S. clarki*, were small; consequently, they will not be included in the analysis of intercompetition. The low incidences of these species indicate their small estuarine populations when compared with steelhead and chinook and coho salmon.

<table>
<thead>
<tr>
<th>Species</th>
<th>Pelagic</th>
<th>Intertidal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper estuary</td>
<td>Lower estuary</td>
</tr>
<tr>
<td>Chum salmon</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Coho salmon</td>
<td>617</td>
<td>12</td>
</tr>
<tr>
<td>Sockeye salmon</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Cutthroat trout</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Steelhead</td>
<td>278</td>
<td>253</td>
</tr>
</tbody>
</table>

1 Includes some adults.

Proportional abundances of juvenile chinook salmon (subyearling and yearling), coho salmon, steelhead, and nonsalmonids are shown by month in Figure 2. If fewer than 10 subyearling chinook salmon were collected, then no comparisons were made. In pelagic areas of the upper estuary, juvenile salmonids were numerically important from April through August, with a substantial decline in September. Yearling chinook salmon were an important part of the catch in April and May, coho salmon in May and June, and steelhead in May. Subyearling chinook salmon were important from May through August.

In the pelagic area of the lower estuary, nonsalmonids were clearly numerically dominant. Periodically this portion of the estuary contained large schools of marine fish, such as Pacific herring, *Clupea*...
FIGURE 2.—Proportional abundances of fish collected in four habitats of the Columbia River estuary in 1980.
harengus pallasi, and northern anchovy, Engraulis mordax.

In intertidal areas of the upper estuary, subyearling chinook salmon was the only abundant salmonid species; its importance was considerably reduced by August.

Catches in intertidal areas of the lower estuary were dominated by nonsalmonids; however, in the intertidal areas, subyearling chinook salmon were more important than in the pelagic zone. Although large numbers of salmonids were captured in the pelagic and intertidal areas of the lower estuary (Table 1), their importance was masked by the large number of marine nonsalmonids.

Thirteen species including yearling chinook salmon were commonly associated with subyearling chinook salmon during at least one of the months in the two seasonal periods in the Columbia River estuary (Table 2).

Juvenile coho salmon were captured primarily in pelagic areas; however, they were occasionally collected in intertidal areas (Table 1). Yearling chinook salmon and steelhead in particular were almost exclusively in pelagic areas.

Length characteristics of subyearling chinook salmon and the commonly associated species are shown in Table 3. Most common species in the pelagic zone of the upper estuary were longer than the subyearling chinook salmon, whereas in the pelagic zone of the lower estuary, many of the species were shorter or the same. In the intertidal areas of the upper estuary, only starry flounder, Platichthys stellatus; threespine stickleback, Gasterosteus aculeatus; peamouth, Mylocheilus caurinus; and American shad, Alosa sapidissima, were commonly associated with subyearling chinook salmon and all of their mean lengths were shorter. In intertidal areas of the lower estuary, many of the common species were

Table 2.—Fish associated with subyearling chinook salmon in the Columbia River estuary from March through September 1980. (C = commonly, O = occasionally, and U = uncommonly associated with subyearlings; * = commonly associated species; J = juveniles; and A = adult.)
TABLE 3.—Total length (mm) characteristics of subyearling chinook salmon and commonly associated species captured in four habitats of the Columbia River estuary in 1980. *N* = total number captured.

<table>
<thead>
<tr>
<th>Species</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2SE</td>
<td>2SE</td>
<td>2SE</td>
<td>2SE</td>
<td>2SE</td>
<td>2SE</td>
<td>2SE</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Upper pelagic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subyearling chinook</td>
<td>86.2</td>
<td>31.2</td>
<td>100.0</td>
<td>0.8</td>
<td>493.0</td>
<td>95.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Yearling chinook</td>
<td>178.2</td>
<td>31.0</td>
<td>149.0</td>
<td>2.6</td>
<td>276.0</td>
<td>149.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Coho</td>
<td>139.4</td>
<td>41.7</td>
<td>147.0</td>
<td>1.6</td>
<td>469.0</td>
<td>145.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Steelhead</td>
<td>203.2</td>
<td>4.2</td>
<td>246.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American shad</td>
<td>187.3</td>
<td>11.8</td>
<td>173.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longfin smelt</td>
<td>194.0</td>
<td>10.2</td>
<td>108.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peamouth</td>
<td>55.0</td>
<td>1.6</td>
<td>177.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower pelagic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subyearling chinook</td>
<td>102.4</td>
<td>2.4</td>
<td>138.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearling chinook</td>
<td>149.4</td>
<td>1.4</td>
<td>509.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coho</td>
<td>207.3</td>
<td>3.6</td>
<td>234.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American shad</td>
<td>172.2</td>
<td>7.2</td>
<td>287.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific herring</td>
<td>152.2</td>
<td>2.6</td>
<td>4264.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern anchovy</td>
<td>149.1</td>
<td>1.8</td>
<td>4530.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surf smelt</td>
<td>83.3</td>
<td>5.8</td>
<td>107.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longfin smelt</td>
<td>100.0</td>
<td>2.7</td>
<td>245.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiner perch</td>
<td>100.0</td>
<td>1.6</td>
<td>150.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper intertidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subyearling chinook</td>
<td>69.2</td>
<td>2.0</td>
<td>214.0</td>
<td>7.6</td>
<td>136.0</td>
<td>85.2</td>
<td>2.4</td>
</tr>
<tr>
<td>American shad</td>
<td>71.0</td>
<td>6.0</td>
<td>242.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peamouth</td>
<td>42.4</td>
<td>1.6</td>
<td>156.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-spine stickleback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surf smelt</td>
<td>92.2</td>
<td>2.4</td>
<td>58.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific herring</td>
<td>74.4</td>
<td>1.5</td>
<td>559.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern anchovy</td>
<td>119.0</td>
<td>4.2</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surf smelt</td>
<td>55.0</td>
<td>1.6</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staghorn sculpin</td>
<td>58.0</td>
<td>10.2</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiner perch</td>
<td>138.0</td>
<td>14.4</td>
<td>89.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Shorter, or no longer than, subyearling chinook salmon. About 5,000 stomachs from 50 species of fish collected from February through October 1980 were analyzed. There were only two predations on juvenile salmonids—two yearling chinook salmon each ate a subyearling chinook salmon. Juvenile subyearling chinook salmon preyed on nonsalmonid fish, chiefly in the lower estuary. Nonsalmonid fish consumed by subyearlings included Pacific sand lance, Ammodytes hexapterus; northern anchovy; longfin smelt, Spirinchus thaleichthys; and whitebait smelt, Allosmerus elongatus. Principal prey items accounted for an average of 93% of the diet biomass for all fish species with a range of 53-100%. Principal prey items of juvenile salmonids and commonly associated nonsalmonids were invertebrates, chiefly crustaceans (Figs. 3, 4); fish were eaten but they were never the only prey.

Figures 5 and 6 show the degree of diet overlap between salmonids and commonly associated species. In the pelagic areas during spring, all the salmonids except steelhead (upper pelagic) had significant diet overlap values (≥0.6). Salmonid species had significant diet overlap values with American shad in the lower estuary and threespine stickleback in the upper estuary. In the intertidal areas during spring, significant diet overlap occurred only between subyearling chinook salmon and staghorn flounder. Significant diet overlap in the spring was primarily due to the importance of Corophium salomonis and C. spinicorne as prey items. In summer there was no significant fish diet overlap.

On 18 May 1980, Mount St. Helens erupted and deposited large amounts of volcanic ash and sediments into the Columbia River, thereby increasing the turbidity of the estuary. For a short time, the increased sediment loads and high turbidities reduced the amount and variety of food items eaten. By July 1980, turbidities returned to lower levels.

DISCUSSION

Some of the same species associated with juvenile chinook salmon in the Columbia River estuary were found in similar associations in other Pacific Northwest estuaries. Conley (1977), working in Everett Bay in Puget Sound, Wash., caught many shiner perch, Cymatogaster aggregata; Pacific staghorn sculpin, Leptocottus armatus; and staghorn flounder in intertidal areas along with juvenile chinook salmon. Myers (1980), working in Yaquina Bay,
Oreg., found that Pacific herring, shiner perch, northern anchovy, and surf smelt, Hypomesus pretiosus, were abundant at her beach seine sites. Durkin et al.\(^3\) found that shiner perch, Pacific herring, surf smelt, and northern anchovy were commonly associated with subyearling chinook salmon in intertidal areas of the lower Columbia River estuary.

Considering the nonsalmonid species commonly associated with subyearling chinook salmon and their size characteristics, nonsalmonid predation on subyearlings in the Columbia River estuary should be minimal. American shad, Pacific herring, surf smelt, longfin smelt, peamouth, threespine stickleback, and shiner perch are essentially invertebrate and/or plant eaters. Large Pacific staghorn sculpins and starry flounder could eat subyearling chinook salmon; however, the large individuals of these species are usually not found in intertidal areas of the estuary. Normally the large sculpins and flounders are found in deep demersal habitats of the Columbia River estuary. Although many researchers have studied the use of the estuarine areas as nursery and feeding areas for salmonids (Mason 1974; Levy and Levings 1978; Reimers et al. 1978; Sibert 1979; Healey 1980; Myers 1980), few have documented the food habits of associated nonsalmonid estuarine fish.

that could prey on salmonid species. Dunford (1975, cited by Levy and Levings 1978) found Pacific staghorn sculpins feeding on salmonids.

Our sampling gear was less effective for capturing adults than juveniles; however, we feel that our samples indicate the relative importance of the various sized fish in the estuary. Larger fish, i.e., adult salmon, steelhead, and American shad, may have swum under or around the sides of the purse seines as we were sampling. Another possible sampling bias, at least in the lower estuary, was the tidal stage at which we sampled. Beach seining was not generally done at high tide because it was impractical due to beach configuration. Possibly more salmonid predators move into mixed intertidal areas during high tide. Even with all the possible biases, if there were any large populations of predators of juvenile salmonids in the estuary, we should have caught more than we did. The logical conclusion is that the estuary represents a sanctuary from fish predators for juvenile salmonids.

The food habits of salmonids differ from estuary to estuary. Unlike the Columbia River estuary where C. salmonis and Daphnia spp. were the primary prey, Myers (1980) found fish to be the primary prey for juvenile chinook and coho salmon in Yaquina Bay, Oreg. Although C. salmonis was important prey in the Sacramento-San Joaquin Delta, Neomysis mercedis was also important for juvenile chinook salmon (Sasaki 1966). In the Squamish River estuary, British Columbia, N. mercedis and Anisogammarus (= Eogammarus) conoestimateus were the primary prey for juvenile chinook and coho salmon (Levy and Levings 1978). In the Sixes River estuary, Oreg., C.
SPRING 1980

FIGURE 5.—Diet overlaps between juvenile salmonids and commonly associated species in the Columbia River estuary during spring 1980. Overlap values were calculated using Morisita’s (1959) equation modified by Horn (1966).
Lower intertidal

Upper intertidal

Lower pelagic

Upper pelagic

FIGURE 6.—Diet overlaps between subyearling chinook salmon and commonly associated species in the Columbia River estuary during summer 1980. Overlap values were calculated using Morisita's (1959) equation modified by Horn (1966).

spinicorne and C. salmonis were found to be important prey for juvenile chinook salmon (Reimers et al. 1978). Although the principal prey items differ in each estuary, the estuaries do provide important feeding habitat. Estuarine feeding and growth play an important role in salmonid and nonsalmonid life histories (McHugh 1967; Mason 1974; Levy and Levings 1978; Healey 1980).

Research indicates that at low prey abundances various prey sizes are eaten as encountered, but at higher densities larger prey are selected by predators (Ivlev 1961; Werner and Hall 1974). We believe the high diet overlap between fish in the spring is related to the occurrence of an abundant food resource (principally C. salmonis). In the summer when Corophium abundance apparently was lower, predators shifted to feeding primarily on zooplankton and diversified their diets, thus keeping diet overlap at a minimum. McConnell et al. (1978) also noted reduced abundance of C. salmonis in the diets of subyearling chinook salmon in the upper Columbia River estuary during the summer.

Information explaining why C. salmonis was an important prey in spring and not in summer is lacking. It was apparent that migrating salmonids and many nonsalmonids were intensely harvesting this food resource. This predation may have affected Corophium abundance. Levings and Levy (1977) and Nelson (1979) showed that fish predators could be a controlling factor in estuarine amphipod populations. Also, the huge deposition of sediment that resulted from the eruption of Mount St. Helens probably reduced C. salmonis populations in the Columbia River estuary (Emmett 1982).

Juvenile salmonids and nonsalmonids share the same habitats. Both nonsalmonids and subyearling chinook salmon utilize intertidal areas of the estuary as feeding and resting areas. Undoubtedly the estuary serves as a sanctuary for many juvenile nonsalmonids as well as for juvenile salmon. Intertidal shallow areas of the estuary typically support rich populations of benthic invertebrates, which are important prey items.

Like the intertidal areas, the pelagic sections of the estuary are utilized by juvenile salmonids and nonsalmonids as feeding places. Many of the juvenile salmonids in the pelagic areas are probably migrating actively to the ocean. Myers (1980) found that the mean length of wild juvenile chinook salmon captured in the channel areas was greater than that of those collected along the shoreline. Gear selectivity may have caused this anomaly; however, if it did not, then Myers (1980) felt that the small juvenile chinook salmon may be rearing along the beaches, then migrating into channel areas at a larger size.

The interrelationships of various species in estuarine habitats will probably change from year to year. Yet we feel the general picture of the fish communities in the estuary in regards to juvenile salmonids will remain virtually unchanged, unless detrimental artificial alterations are made. This estuary serves as a sanctuary (from other fish predators) for juvenile salmonids, along with being an important feeding area for some subyearling chinook.
The juvenile salmonids share the same estuarine habitats with many other species, both freshwater and marine.

ACKNOWLEDGMENTS

We wish to express our thanks to personnel at the Hammond and Prescott, Oreg., Field Stations of the Northwest and Alaska Fisheries Center (NMFS) who helped collect data or assisted in the preparation of this paper. James Peacock and his staff prepared our text figures. Gregory Hammann and John Loch assisted in analyzing fish stomach contents. Theodore Blahm and Gerald Monan reviewed the manuscript. Data collections for this study were in part supported by Columbia River Estuary Data Development Program funds.

LITERATURE CITED

