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Abstract

For decades, the National Marine Fisheries Service has conducted
a telephone survey of United States coastal households to estimate
recreational effort (the number of fishing trips) in saltwater. The ef-
fort estimates are computed for each of 17 US states along the coast
of the Gulf of Mexico and the Atlantic Ocean, during six two-month
waves (January-February through November-December). Recently,
concerns about coverage errors in the telephone survey have led to
implementation of a mail survey of the same population. Results from
the mail survey are quite different from those of the telephone survey,
due to coverage differences and mode effects, and a means of “cali-
brating” or reconciling the two sets of estimates is needed by fisheries
managers and stock assessment scientists. We develop a log-normal
model for the estimates from the two surveys, accounting for tempo-
ral dynamics through regression on population size and state-by-wave
seasonal factors, and accounting in part for changing coverage prop-
erties through regression on wireless telephone penetration. Using the
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estimated design variances, we develop a regression model that is an-
alytically consistent with the log-normal mean model. Finally, we use
the modeled design variances in a Fay-Herriot small area estimation
procedure to obtain empirical best linear unbiased predictors of the
reconciled effort estimates for all states and waves.

1 Introduction

For decades, the National Marine Fisheries Service (NMFS) has conducted
the Coastal Household Telephone Survey (CHTS) to collect recreational salt-
water fishing effort (the number of fishing trips) from shore and private boat
anglers in 17 US states along the coasts of the Atlantic Ocean and the Gulf
of Mexico: Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana,
Maine, Maryland, Massachusetts, Mississippi, New Hampshire, New Jersey,
New York, North Carolina, Rhode Island, South Carolina, and Virginia.
Data collection occurs during a two-week period at the end of each two-
month sample period (or “wave”), yielding six waves for each year. However,
samples are not obtained for every wave in every state; for example, many
states have no wave 1 sample, reflecting minimal fishing effort during January
and February in those states.

The CHTS uses random digit dialing (RDD) for landlines of households
in coastal counties. RDD suffers from several shortcomings in this context,
such as the inefficiency at identifying anglers (National Research Council,
2006), the declining response rate for telephone surveys (Curtin et al., 2005),
and the undercoverage of anglers due to the increase in wireless-only house-
holds (Blumberg and Luke, 2013). Thus, after some experimentation, NMFS
implemented the new Fishing Effort Survey (FES) that involves mailing ques-
tionnaires to a probability sample of postal addresses (Andrews et al., 2014).

The telephone-based CHTS and the mail-based FES have obvious method-
ological differences. The two surveys have different coverage properties, be-
cause they use very different frames: RDD of landlines for CHTS versus
address-based sampling, with oversampling of addresses matched to licensed
anglers, for FES. They have different nonresponse patterns, with overall FES
response rates nearly three times higher than CHTS response rates (Andrews
et al., 2014). Finally, the measurement processes are fundamentally different,
due to the differences in asking about angling activity over the phone versus
a paper form.
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Due at least in part to these methodological differences, there is a large
discrepancy between the effort estimates from the CHTS and the FES esti-
mates. Whatever the reasons for the discrepancy, it is of interest to fisheries
managers and stock assessment scientists to be able to convert from the
“units” of the telephone survey estimates to those of the mail survey es-
timates, and vice versa. This conversion is known as “calibration” in this
context, and is not to be confused with the calibration method common in
complex surveys. The calibration allows construction of a series of compara-
ble estimates across time.

The data used for the calibration exercise come from the CHTS for most
states and waves from 1982 to 2016, and from the FES for states and waves
from 2015 to 2016. For each survey, the data consist of estimated total effort
for shore fishing and for private boat fishing, along with estimated design
variances and sample sizes, for each available state and wave.

The methodology described here uses effort estimates transformed via
natural logarithms, for either shore or private boat fishing. Let M̂st denote
the estimated log-effort based on the mail survey in state s and year-wave t
and let T̂st denote the estimated log-effort based on the telephone survey. We
build a model that assumes that both mail and telephone estimates target a
common underlying time series of true effort, but that each survey estimate is
distorted both by sampling error and non-sampling error. The true effort se-
ries is further described with a classical time series model consisting of trend,
seasonal, and irregular components. The sampling error series have proper-
ties that are well-understood based on features of the corresponding sampling
designs, including well-estimated design variances. The non-sampling error
cannot be completely disentangled from the true effort series. But given the
overlap of mail and telephone estimates for some states and waves, the dif-
ference in the non-sampling errors can be estimated, and can be modeled
with available covariates to allow extrapolation forward or backward in time.
This extrapolation is a key part of the calibration procedure.

The combined model for the two sets of estimates and the underlying
true effort series is a linear mixed model of a type that commonly appears
in the context of area-level small area estimation, where it is known as the
Fay-Herriot model (Fay and Herriot, 1979). In Fay-Herriot, it is standard to
treat design variances as known. Our design variances are based on moderate
to large sample sizes (minimum size n = 39) in each state and wave and so
are well-estimated by the standards of small area estimation. A complication
is that our design variances are on the original effort scale rather than the
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log scale. As an alternative to standard Taylor linearization, we develop a
novel approach to transforming the estimated design variances that ensures
analytic consistency between our mean model and our variance model.

The Fay-Herriot methodology leads to empirical best linear unbiased pre-
dictors (EBLUP’s) of the mail target or the telephone target, and these con-
stitute our calibrated effort series. Unlike the standard Fay-Herriot context,
the EBLUP’s require prediction at new sets of covariates. We adapt standard
mean square error (MSE) approximations and estimates to this non-standard
situation, and evaluate their performance via simulation. Finally, we apply
the methods to the problem of calibrating past telephone survey estimates
to the mail survey.

2 Model

2.1 Mean model

We fix attention on one type of fishing behavior, either shore or private
boat: the model development is identical in both cases. We assume that the
telephone effort estimate T̂st is a design-unbiased estimator of the “telephone
target” Tst, which includes both the true effort and survey mode effects due
to the telephone methodology, while the mail effort estimate M̂st is a design-
unbiased estimator of the “mail target” Mst, which includes both the true
effort and survey mode effects due to the mail methodology. That is,

T̂st = Tst + eTst and M̂st = Mst + eMst

where the sampling errors {eTst} and {eMst } have zero mean under repeated
sampling.

We assume that both the telephone target and the mail target contain the
true effort series, which is further assumed to contain state-specific trends,
due in part to changing state population sizes, state-specific seasonal effects
that vary wave to wave, and irregular terms that are idiosyncratic effects
not explained by regular trend or seasonal patterns. We model state-specific
trends by using annual state-level population estimates from the US Census
Bureau US Census Bureau (2016) on a log scale. We model a general sea-
sonal pattern via indicators for the two-month waves, and allow the seasonal
pattern to vary from state to state. The remaining irregular terms, denoted
{νst} below, represent real variation not explained by the regular trend plus
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seasonal pattern, and are modeled as independent and identically distributed
(iid) random variables with mean zero and unknown variance, ψ.

The survey mode effects present in the telephone and mail targets are
non-sampling errors, including potential biases due to coverage error (pop-
ulation 6= sampling frame), nonresponse error (sample 6= respondents), and
measurement error (true responses 6= measured responses). These effects
may have their own trend and seasonality: for example, due to changes in
the quality of the frame over time, changes in response rates over years or
waves, changes in implementation of measurement protocols over time, etc.
These non-sampling errors thus cannot be completely disentangled from the
true effort series (a problem in every survey).

Because of the availability of overlapping effort estimates, however, the
difference in the effort estimates is an unbiased estimator of the difference
in the survey mode effects. These differences can then be modeled and ex-
trapolated to other time points that do not have overlapping data, allowing
calibration from the telephone target to the mail target, and vice versa. The
extrapolation requires a model and suitable covariates, which in this setting
means covariates that explain the change in measurement error, nonresponse
error, or coverage error over time. The calibration thus relies critically on
extrapolation, with the usual caveat that the calibrated values may be badly
wrong if the model does not hold over the full range of time.

The changing proportion of wireless-only households is a potential covari-
ate for explaining changes in coverage error over time for the landline-only
telephone survey. Accordingly, we obtained June and/or December wireless-
only proportion estimates for each state from 2007–2014 from the National
Health Interview Survey, conducted by the National Center for Health Statis-
tics (Blumberg and Luke, 2013). We transformed these proportions via em-
pirical logits and fitted the transformed values as state-specific lines with a
slope change in 2010. The fitted model has an adjusted R2 value of 0.9948.
Transforming back to proportions and extrapolating backward in time yields
a series {wst} that is approximately zero prior to the year 2000.

Either trend or seasonal could contain survey mode effects. Accordingly,
we allow for the possibility that trend and seasonal are different for mail
versus telephone, and in particular we allow for the possibility that either
trend or seasonal can change with the level of wireless.
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Our combined model then assumes

T̂st = Tst + eTst
Tst = a′stα+ 0 · b′stµ+ wstc

′
stγ + νst

= [a′st,0
′, wstc

′
st]β + νst

= x′Tstβ + νst

M̂st = Mst + eMst
Mst = a′stα+ 1 · b′stµ+ 0 · c′stγ + νst

= = [a′st, b
′
st,0

′]β + νst

= x′Mstβ + νst, (1)

where

• ast is a vector of known covariates, including intercept, log(population),
state indicators, wave indicators, and state by log(population) and state
by wave interactions;

• bst and cst are subvectors from ast;

• β′ = [α′,µ′,γ ′] is a vector of unknown regression coefficients;

• the sampling errors {eTst} are independent N (0, σ2
Tst) random variables,

with known design variances σ2
Tst;

• the sampling errors {eMst } are independent N (0, σ2
Mst) random vari-

ables, with known design variances σ2
Mst;

• the irregular terms {νst}, representing real variation not explained by
the regular trend plus seasonal pattern, are independent and identically
distributed (iid) N (0, ψ) random variables, with unknown variance ψ;

• {eTst}, {eMst } and {νst} are mutually independent.

The assumed independence of the sampling errors is justified by independent
samples drawn state-to-state and wave-to-wave, and the assumed normality is
justified by central limiting effects of moderate to large-size stratified samples
in each state and wave. Further, we assume that because the mail and
telephone surveys are selected and conducted independently, the sampling
errors {eTst} and {eMst } are independent of one another. We use simulation to
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assess the sensitivity of some of our methods to the normality assumption on
the random effects in §4.1 below. The design variances {σ2

Tst} and {σ2
Mst}

are on the log scale, while the available design variance estimates {V̂Tst} and

{V̂Mst} are on the original scale; we address this discrepancy in §2.2 below.

2.2 Design variance model

Under the log-normal effort models (1), the variances of the sampling errors
are given by

VTst = Var
(

exp(T̂st) | Tst
)

=
{

exp(σ2
Tst)− 1

}
exp

{
2Tst + σ2

Tst

}
(2)

and

VMst = Var
(

exp(M̂st) |Mst

)
=
{

exp(σ2
Mst)− 1

}
exp

{
2Mst + σ2

Mst

}
. (3)

We need to estimate σ2
Tst and σ2

Mst, incorporating the approximately design-

unbiased estimates V̂Tst and V̂Mst of VTst and VMst, respectively.
We follow an approach related closely to generalized variance function

estimation (e.g., Ch. 7 of Wolter (2007)). Assume that given Tst and Mst,
the empirical coefficients of variation (CV’s) are log-normally distributed,

independent of the effort estimates T̂st and M̂st:

ln

(
V̂Tst

exp(2T̂st)

)
= d′Tstδ

T
0 + δT1 ln(nTst) + ηTst, ηTst ∼ N (0, τ 2T ) (4)

where dTst is a vector of known covariates (including state, wave, and state
by wave interaction), and

ln

(
V̂Mst

exp(2M̂st)

)
= d′Mstδ

M
0 + δM1 ln(nMst) + ηMst , ηMst ∼ N (0, τ 2M), (5)

where dMst is a vector of known covariates. These models can be rewritten
as regression models for the design variance estimates, with known offsets:

ln
(
V̂Tst

)
= 2T̂st + d′Tstδ

T
0 + δT1 ln(nTst) + ηTst, ηTst ∼ N (0, τ 2T )
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and

ln
(
V̂Mst

)
= 2M̂st + d′Mstδ

M
0 + δM1 ln(nMst) + ηMst , ηMst ∼ N (0, τ 2M).

Empirically, each of these models fits very well: 94.54% adjusted R2 value
for telephone, and 98.01% adjusted R2 value for mail.

These empirical models may be of independent interest as generalized
variance functions for variance estimation on the original scale: by plugging
the point estimate, state, wave, and sample size into the fitted versions of (4)
or (5), one obtains excellent point estimates of the coefficient of variation.

Assuming that V̂Tst is exactly unbiased for VTst, we then have from the
log-normal CV model (4) and the assumed conditional independence of V̂Tst
and T̂st given Tst that

exp

{
d′Tstδ

T
0 + δT1 ln(nTst) +

τ 2T
2

}
= E

 V̂Tst

exp
(

2T̂st

)
∣∣∣∣∣∣Tst


= E

[
V̂Tst | Tst

]
E
[
exp

(
−2T̂st

)
| Tst

]
= VTst exp

(
−2Tst + 2σ2

Tst

)
, (6)

and similarly

exp

{
d′Mstδ

M
0 + δM1 ln(nMst) +

τ 2M
2

}
= E

 V̂Mst

exp
(

2M̂st

)
∣∣∣∣∣∣Mst


= E

[
V̂Mst |Mst

]
E
[
exp

(
−2M̂st

)
|Mst

]
= VMst exp

(
−2Mst + 2σ2

Mst

)
. (7)

Thus, we have from (2) and (6) that

exp

{
d′Tstδ

T
0 + δT1 ln(nTst) +

τ 2T
2

}
=
{

exp(σ2
Tst)− 1

}
exp

{
2Tst + σ2

Tst

}
exp

(
−2Tst + 2σ2

Tst

)
= exp(4σ2

Tst)− exp
(
3σ2

Tst

)
(8)
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and from (3) and (7) that

exp

{
d′Mstδ

M
0 + δM1 ln(nMst) +

τ 2M
2

}
=
{

exp(σ2
Mst)− 1

}
exp

{
2Mst + σ2

Mst

}
exp

(
−2Mst + 2σ2

Mst

)
= exp(4σ2

Mst)− exp
(
3σ2

Mst

)
. (9)

The left-hand-side parameters of (8) can be estimated from (4) and the left-
hand-side parameters of (9) can be estimated from (5). The resulting esti-
mates of σ2

Tst and σ2
Mst can then be obtained by solving the equations (8)

and (9), which are quartic polynomials in exp(σ2
Tst) and exp(σ2

Mst). Using
Descartes’ rule of signs, it can be shown that each of these quartic equations
has one negative real root, two complex conjugate roots, and one positive real
root. The solutions for σ2

Tst and σ2
Mst are then the logarithms of the unique,

positive real roots, which can be obtained via standard numerical procedures.
While these solutions are in fact estimates, we will treat them as fixed and
known in what follows, as is standard in the small area estimation techniques
which we will apply in subsequent sections.

The resulting design variances on the log scale, σ2
Tst and σ2

Mst, are strongly
correlated with the estimated variance approximations from Taylor lineariza-

tion, V̂Tst exp
(
−2T̂st

)
and V̂Mst exp

(
−2M̂st

)
: 0.798 and 0.803, respectively.

But they are not identical (see Figure 1), and the method described forces
analytical consistency between the mean model and the variance model.

2.3 Fay-Herriot small area estimation model

Define

x′st =


x′Tst, if no mail estimate is available;

x′Mst, if no telephone estimate is available;

(xTst + xMst)
′/2, otherwise.
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Figure 1: Estimated design variances for log-effort via Taylor linearization
versus solution of the quartic polynomial equations (8) for telephone (left
panel) and (9) for mail (right panel).

Then it is convenient to write

Yst =


T̂st, if no mail estimate is available;

M̂st, if no telephone estimate is available;(
T̂st + M̂st

)
/2, otherwise;

=


x′Tstβ + νst + eTst, if no mail estimate is available;

x′Mstβ + νst + eMst , if no telephone estimate is available;

(xTst + xMst)
′β/2 + νst + (eTst + eMst )/2, otherwise;

= x′stβ + νst + est. (10)

This model then follows exactly the linear mixed model structure of Fay
and Herriot (1979), with direct estimates Yst equal to regression model plus
random effect νst plus sampling error with “known” design variance, given
by

Dst =


σ2
Tst, if no mail estimate is available;

σ2
Mst, if no telephone estimate is available;

1
4

(σ2
Tst + σ2

Mst) , otherwise.
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Averaging the telephone and mail estimates results in a small loss of informa-
tion, since we are replacing two correlated observations with one observation,
but allows the use of standard software for estimation.

3 Methods

3.1 Estimation for the Fay-Herriot model

Define A = {(s, t) : Yst is not missing} to be the set of all state by year-
wave combinations for which we have an estimate from either survey. Let m
denote the size of the set A. Define X = [x′st](s,t)∈A, Y = [Yst](s,t)∈A, and

Σ(ψ) = Var (Y ) = diag{ψ +Dst}(s,t)∈A.

Then
Y = Xβ + [νst](s,t)∈A + [est](s,t)∈A.

If ψ were known, the best linear unbiased estimator (BLUE) of β would be

β̃ψ =
{
X ′Σ−1(ψ)X

}−1
X ′Σ−1(ψ)Y . (11)

Since ψ is not known, we replace it by a consistent estimator to obtain

β̂ =
{
X ′Σ−1(ψ̂)X

}−1
X ′Σ−1(ψ̂)Y . (12)

We will use the Restricted Maximum Likelihood (REML) estimate ψ̂ unless
otherwise indicated.

3.2 Prediction

In the classical Fay-Herriot context, it is of interest to predict

x′stβ + νst

from (10). In our setting, however, we seek to predict

φst = z′stβ + νst, (13)

where zst may not equal xst. For example, for a past time point with a
telephone survey estimate but no mail survey estimate, we may want to use

z′st = x′Mst = [a′st, b
′
st,0

′]

11



to predict the mail target Mst, while for a future time point with a mail
survey estimate but no telephone, we may want to use

zst = [a′st,0
′,0′]

to predict the telephone target, corrected for the wireless effect: Tst−wstc′stγ =
a′stα+ νst.

Let λst denote a m × 1 vector with a one in the (s, t)th position and
zero elsewhere. Under normality, it is well-known that the best mean square
predictor of φst in (13) is

φst (β, ψ) = z′stβ + ψλ′stΣ
−1(ψ)(Y −Xβ), (14)

which is feasible only if both β and ψ are both known. If only ψ is known,
the best linear unbiased predictor (BLUP)

φst

(
β̃ψ, ψ

)
= z′stβ̃(ψ) + ψλ′stΣ

−1(ψ)(Y −Xβ̃(ψ)) (15)

is obtained by plugging the BLUE from (11) into (14). Finally, if neither β
nor ψ is known, then the empirical best linear unbiased predictor (EBLUP)
can be obtained by substituting a consistent estimator of ψ into (15):

φst

(
β̂, ψ̂

)
= z′stβ̂ + ψ̂λ′stΣ

−1(ψ̂)(Y −Xβ̂), (16)

where β̂ is given by (12). These EBLUP’s are the proposed calibrated values
on the log scale.

3.3 Mean square error approximation

To assess the uncertainty of the calibrated values, we adapt the approach of
Datta and Lahiri (2000) in approximating the mean square error (MSE) of

the φst

(
β̂, ψ̂

)
values. It can be shown that

MSE
{
φst

(
β̂, ψ̂

)}
= E

[{
φst

(
β̂, ψ̂

)
− φst

}2
]

= E

[{
φst

(
β̃ψ, ψ

)
− φst

}2
]

+ E

[{
φst (β, ψ)− φst

(
β̃ψ, ψ

)}2
]

+E

[{
φst

(
β̂, ψ̂

)
− φst (β, ψ)

}2
]

= ġ1st(ψ) + ġ2st(ψ) + ġ3st(ψ) + o
(
m−1

)
, (17)
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where

ġ1st(ψ) =
ψDst

ψ +Dst

,

ġ2st(ψ) =

(
ψ(zst − xst)′ +Dstz

′
st

ψ +Dst

)[∑
u∈A

(ψ +Du)
−1xux

′
u

]−1

×
(
ψ(zst − xst)′ +Dstz

′
st

ψ +Dst

)′
,

and

ġ3st(ψ) =
2D2

st

(ψ +Dst)3
1∑

u∈A(ψ +Du)−2
.

The terms ġ1st(ψ) and ġ3st(ψ) are identical to the terms g1st(ψ) and g3st(ψ)
in §4 of Datta and Lahiri (2000), while ġ2st(ψ) simplifies to g2st(ψ) of that
paper in the special case of zst = xst. We omit the proofs.

3.4 Mean square error estimation

We now propose an estimator of the MSE approximation in (17). Using
arguments like those in §5 of Datta and Lahiri (2000), it can be shown that

E
[
ġ1st(ψ̂)

]
' ġ1st(ψ)− ġ3st(ψ)

E
[
ġ2st(ψ̂)

]
' ġ2st(ψ)

E
[
ġ3st(ψ̂)

]
' ġ3st(ψ)

and hence an approximately unbiased estimator of the MSE approximation
in (17) is given by

mse
{
φst

(
β̂, ψ̂

)}
= ġ1st(ψ̂) + ġ2st(ψ̂) + 2ġ3st(ψ̂). (18)

We assess the quality of the asymptotic approximation (17) and its estimator
(18) via simulation in §4.1.
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3.5 Prediction on the original scale

To compute predictors on the original scale, we back-transform by exponen-
tiating the EBLUP from (16) and adjust for the nonlinearity of the back-
transformation using the estimated MSE from (18):

̂exp(φst) = exp

[
φst

(
β̂, ψ̂

)
+

1

2
mse

{
φst

(
β̂, ψ̂

)}]
, (19)

which is an estimator of the best mean square predictor under the normal
model, and a standard adjustment even without the normality assumption.

4 Empirical results

4.1 Simulation

In this section, we investigate the performance of our second-order approx-
imation of MSE and the estimated MSE under a setting that mimics the
calibration problem of this paper, but with a smaller number of observed
time points: 17 states and six years (1985, 1995, 2005, 2010, 2015, and 2016)
of six waves each, with telephone effort estimates for all waves, and with mail
effort estimates for only the final two years. In this setting, m =(17 states)(6
waves)(6 years)=612. We took the wireless values and US Census population
counts from the actual data.

We used as true regression coefficient values the estimates from model
(10) fitted to shore data, with intercept, log(population), state indicators,
wave indicators, state by log(population) interaction, and state by wave;
plus wireless and its interactions with log(population), state indicators, and
wave indicators; plus an indicator for presence of a mail survey estimate and
the mail indicator’s interactions with log(population), state indicators, and
wave indicators. We also used ψ = 0.11, again from the fit of the model.
The simulation model is similar to the final model selected in §4.2 below.

We considered three different patterns for the design variances {Dst}.
First, we sampled six actual design variances for each simulated state, ar-
ranged the six into a “peaked” seasonal pattern, and replicated this seasonal
pattern across all six years to create pattern (b). We considered two addi-
tional settings, by multiplying pattern (b) by 0.5 to yield pattern (a), and
multiplying pattern (b) by 2.0 to yield pattern (c). The simulated sampling

14



errors {est} in (10) were then generated independently as N (0, Dst) under
each pattern.

Following Datta et al. (2005), we considered three distributions to simu-
late the normalized random effects:

• {ψ−1/2νst} iid N (0, 1);

• {ψ−1/2νst} iid Laplace(0, 1/
√

2);

• {ψ−1/2νst} iid centered Exponential(1) (that is, exponential random
variables centered to mean zero).

Under each distribution, E [νst] = 0 and Var (νst) = ψ.
For each combination of sampling variance pattern and random effect dis-

tribution, we generated 1000 data sets from model (10). For each simulated
data set, we used the R package sae (Molina and Marhuenda, 2015) to com-

pute ψ̂ via REML and β̂. We computed the EBLUP’s in (16) for the mail
targets {Mst}, approximated their MSE’s using (17), and estimated their
MSE’s using (18). We then compared the approximations and the estimates
to the true (Monte Carlo) MSE’s over the 1000 simulated realizations.

Figure 2 shows plots of the MSE approximation and the estimated MSE
versus the true MSE for each of the nine simulation scenarios. Here the
gray dots are the MSE approximations and the black circles are the esti-
mated MSE’s. The approximations and estimates are nearly overlapping in
all cases, indicating that the MSE estimates are essentially unbiased for the
MSE approximations. Further, the points are all very close to the (0,1) refer-
ence line, indicating that the proposed methodology yields acceptable MSE
estimates across a range of settings.

4.2 Calibration of the CHTS and FES estimates

For the data described in §1, we used the R package sae (Molina and Marhuenda,
2015) to fit a number of models via maximum likelihood for both shore
fishing and private boat fishing, and compared the models via their AIC
values. The smallest model considered included intercept, log(population),
state indicators, wave indicators, state by log(population) interaction, and
state by wave interaction. That is, the smallest model includes no differ-
ences due to survey methodology and instead drops the terms b′stµ and

15
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Laplace mixed effects with pattern (a)

Monte Carlo MSE
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Laplace mixed effects with pattern (b)
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Laplace mixed effects with pattern (c)

Monte Carlo MSE
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Centered exponential mixed effects with pattern (a)

Monte Carlo MSE
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Centered exponential mixed effects with pattern (b)

Monte Carlo MSE
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Figure 2: MSE approximation (solid gray dots) and estimated MSE’s (open
black circles) versus true MSE from Monte Carlo, for random effect dis-
tributions normal, Laplace, and centered exponential across the rows, and
sampling error patterns (a), (b), and (c) across the columns.
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wstc
′
stγ from (1). The largest model considered added wireless and its in-

teractions with log(population), state indicators, wave indicators, and state
by log(population), together with an indicator for presence of a mail survey
estimate and the mail indicator’s interactions with log(population), state in-
dicators, and wave indicators. The omission of the higher order interactions
between wireless and the mail indicator is due to parsimony: for the mail
indicator in particular, there are only 17 states and 11 waves from which to
estimate the parameters µ in model (1).

Numerous submodels between the smallest and largest were considered;
the best four models and additional reference models are given in Table 1
for shore fishing and Table 2 for private boat fishing. The tables are ordered
by AIC values, with the best models at the top. The models that ignore
some (largest minus all mail, largest minus all wireless) or all (smallest) of
the survey mode differences are not competitive with the models that include
these factors. The largest model considered is quite competitive, with the
best models dropping a small number of interactions from that largest model.

While not the best model for either shore or private boat, the largest
model minus the mail by log(population) interaction is third best in both
cases. It is operationally convenient to use a common model for both cali-
brations, and this particular model is further convenient because, when ex-
trapolating back in time, it involves only state by wave level shifts once the
effect of wireless has died out. We therefore chose this model as the final
model for both modes of fishing, and refitted it using REML to estimate the
unknown variance ψ. We then computed EBLUP’s of the mail target {Mst}
for all states and waves.

An example for Alabama shore fishing is shown in Figure 3 and an exam-
ple for Florida private boat fishing is shown in Figure 4. In each figure, we
show the effects of successive adjustment, from the telephone log-effort esti-
mates {T̂st}, to the estimates {T̂st + b′stµ̂} that adjust only for mail method-

ology effects, to the estimates {T̂st+b′stµ̂−wstc′stγ̂} that adjust for both mail
and wireless, and finally the EBLUP’s themselves. As expected, the effect of
wireless is only present in the later years since 2000, and is a relatively mod-
est effect. The EBLUP can be seen as a smoothed version of the estimates
adjusted for mail methodology and wireless effects.
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Model is largest minus terms below: log(likelihood) AIC df

mail:log(pop) and wireless:wave -1803.53 3947.06 2798
mail:log(pop), mail:wave, wireless:wave -1810.49 3950.99 2803

mail:log(pop) -1801.57 3953.14 2793
nothing (largest) -1801.23 3954.47 2792

mail:log(pop) and mail:wave -1808.48 3956.96 2798
mail:log(pop) and mail:state -1821.50 3961.01 2809

mail interactions -1828.03 3964.07 2814
wireless interactions -1942.98 4161.97 2830

all interactions -1969.05 4170.10 2852
all mail -1935.15 4176.30 2815

all wireless -1977.54 4229.09 2831
all mail and all wireless (smallest) -2109.83 4447.66 2854

Table 1: Maximized log(likelihood), AIC and residual degrees of freedom
(df) for various models fitted to effort estimates for shore fishing. See text
for description of largest model.

Model is largest minus terms below: log(likelihood) AIC df

mail interactions -1336.00 2981.99 2816
mail:log(pop) and mail:wave -1320.07 2982.13 2800

mail:log(pop) -1315.48 2982.97 2795
mail:log(pop) and mail:state -1331.70 2983.40 2811

nothing (largest) -1314.83 2983.66 2794
mail:log(pop) and wireless:wave -1323.26 2988.52 2800

mail:log(pop), mail:wave, wireless:wave -1332.19 2996.37 2805
all mail -1417.45 3142.90 2817

wireless interactions -1463.00 3204.01 2832
all interactions -1495.69 3225.37 2854

all wireless -1548.81 3373.62 2833
all mail and all wireless (smallest) -1611.74 3453.48 2856

Table 2: Maximized log(likelihood), AIC and residual degrees of freedom
(df) for various models fitted to effort estimates for private boat fishing. See
text for description of largest model.
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Figure 3: EBLUP’s
{
φst

(
β̂, ψ̂

)}
(gold curve) of mail targets {Mst} for shore

fishing log-effort in Alabama. Blue dots are telephone log-effort estimates
{T̂st} and pink triangles are mail log-effort estimates {M̂st}. For comparison

to EBLUP’s, gray curve is the estimator {T̂st + b′stµ̂} that adjusts only for

mail methodology effects, and black curve is {T̂st + b′stµ̂ − wstc
′
stγ̂} that

adjusts for mail and wireless.
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Figure 4: EBLUP’s
{
φst

(
β̂, ψ̂

)}
(gold curve) of mail targets {Mst} for

private boat fishing in Florida. Blue dots are telephone log-effort estimates
{T̂st} and pink triangles are mail log-effort estimates {M̂st}. For comparison

to EBLUP’s, gray curve is the estimator {T̂st + b′stµ̂} that adjusts only for

mail methodology effects, and black curve is {T̂st + b′stµ̂ − wstc
′
stγ̂} that

adjusts for mail and wireless.
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5 Discussion

The proposed methodology accounts for various sources of variation in the ef-
fort series from each survey, including trend, seasonality and irregular terms
in the true effort series, together with survey mode effects in the two se-
ries. The model assumes that differences in measurement and nonresponse
errors between the two surveys would be stable over time, while the changes
in coverage error over time due to growth in wireless-only households is ex-
plicitly modeled. Further, the methodology accounts for uncertainty due to
sampling error, using a novel approach to ensure analytical consistency in
mapping design variances estimated on the original scale to design variances
estimated on the log scale.

As formulated in this paper, the calibration methodology turns out to
follow a standard, well-established procedure: Fay-Herriot small area estima-
tion. This means that the calibrated values turn out to empirical best linear
unbiased predictors under a linear mixed model fitted using likelihood-based
techniques. The method is flexible enough to provide optimal calibrated val-
ues for different problems: predicting mail targets using telephone-only data,
or predicting telephone targets using mail-only data, for example.

Uncertainty is quantified via a mean square error approximation that
adapts existing methods from the literature. Simulation results show that
the mean square error approximation and its estimator are highly accurate
for the kinds of sample sizes and sampling errors present in the calibration
data. The methodology is readily implemented with standard software.
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