
ICES Journal of Marine Science, 61: 518e525 (2004)
doi:10.1016/j.icesjms.2004.03.012

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/61/4/518/603573 by N
O

AA C
e

Enumeration, measurement, and identification of net
zooplankton samples using the ZOOSCAN digital
imaging system

Philippe Grosjean, Marc Picheral, Caroline Warembourg, and Gabriel Gorsky

Grosjean, P., Picheral, M., Warembourg, C., and Gorsky, G. 2004. Enumeration,
measurement, and identification of net zooplankton samples using the ZOOSCAN digital
imaging system. e ICES Journal of Marine Science, 61: 518e525.

Identifying and counting zooplankton are labour-intensive and time-consuming processes
that are still performed manually. However, a new system, known as ZOOSCAN, has been
designed for counting zooplankton net samples. We describe image-processing and the
results of (semi)-automatic identification of taxa with various machine-learning methods.
Each scan contains between 1500 and 2000 individuals !0.5 mm. We used two training
sets of about 1000 objects each divided into 8 (simplified) and 29 groups (detailed),
respectively. The new discriminant vector forest algorithm, which is one of the most
efficient methods, discriminates between the organisms in the detailed training set with an
accuracy of 75% at a speed of 2000 items per second. A supplementary algorithm tags
objects that the method classified with low accuracy (suspect items), such that they could be
checked by taxonomists. This complementary and interactive semi-automatic process
combines both computer speed and the ability to detect variations in proportions and grey
levels with the human skills to discriminate animals on the basis of small details, such as
presence/absence or number of appendages. After this checking process, total accuracy
increases to between 80% and 85%. We discuss the potential of the system as a standard for
identification, enumeration, and size frequency distribution of net-collected zooplankton.
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Introduction

Zooplankton play a central role in aquatic ecosystems

relative to phytoplankton and higher trophic levels (Banse,

1995). Yet understanding the influence of physical forcing

on zooplankton population dynamics is still a gap in our

knowledge. Likewise, the steady increase of demographic

pressure and industrial activity, the overfishing of com-

mercial resources, and the destruction of natural habitats all

continue to stress marine and freshwater environments, thus

raising the question: how do changes in the global

environment affect the abundance, diversity, and production

of plankton and nekton?

In the oceans, the role of zooplankton in the transformation

and flux of organic matter is not fully understood, especially

the production of, and interaction with, marine snow.
1054-3139/$30.00 � 2004 Published
Furthermore, most marine metazoans spend at least part of

their lifetime (larval stages) in planktonic forme a stage that

is ecologically critical for species survival and dispersion.

Zooplankton is sensitive and reactive to external per-

turbations (Lenz in Harris et al., 2000) and is, consequently,

an indicator of environmental change, i.e. of the possible

impacts of phenomena such as global warming (Beaugrand

et al., 2002) or a rapid and exponential increase in CO2

partial pressure in the atmosphere (Siegenthaler and

Sarmiento, 1993). Various other perturbations (including

anthropogenic: fisheries, chemical and organic pollutions,

.) also influence the composition and structure of different

trophic levels, but their effects are not known completely

(Planque and Ibanez, 1997).

Despite these observations, the study of zooplankton

populations is not a major priority in some large-scale
by Elsevier Ltd on behalf of International Council for the Exploration of the Sea.

mailto:philippe.grosjean@umh.ac.be
mailto:philippe.grosjean@umh.ac.be


519Identifying and counting zooplankton

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/61/4/518/603573 by N
O

AA C
entral Library user on 11 D

ecem
ber 2018
programmes and international projects. The reasons are

partly related to the difficulty in collecting data, leading to

fragmented information that is hard to interpret. Sampling,

manual identification, and counting of zooplankton are

labour-intensive and time-consuming and limit the number

of net tows that can be processed. Moreover, net-sampling

always integrates spatial information. Acoustics and optical

counters give insight into spatial distribution, but at the cost

of taxonomic identification (for reviews of the various

methods, see Foote and Stanton and Foote in Harris et al.

(2000) and Wiebe and Benfield (2003)).

In such a context, the development of new technologies

that can provide rapid, unbiased, and quantitative data

about zooplankton is likely to significantly advance our

knowledge. One aspect that deserves attention is the

retrospective analysis of historical samples, particularly

the study of time-series. More detailed analyses of such

series are likely to provide a better interpretation of long-

term changes in ecosystems. Indeed, we should focus on

series as old as possible to avoid the ‘‘syndrome of baseline

shift’’ formulated by Pauly (1995) (but see also Myers,

2000). This implies dealing with historical samples, and

consequently new technologies developed must remain

compatible with previous sampling techniques.

Image analysis has been considered a potential alternative

to traditionalmanual treatment of plankton samples (Jefferies

et al., 1984; Rolke and Lenz, 1984; Gorsky et al., 1989;

Steidinger et al., 1990; Tang et al., 1998), but a marriage

between optical systems and software development has

never matured. One reason is the difficulty in identifying and

measuring flexible objects with highly variable shapes.

Zooplankton can rest in lateral or ventral positions; ex-

tensions (e.g. spines, antennae, appendages) from the body

are often in different planes; individuals can overlap; or

individuals may be damaged. In recent years, the steady

increase in the power of computers, the development of faster

and more accurate digital acquisition hardware, and the

progress made in machine-learning techniques used to

analyse such data enable us to reconsider the problem today.

We have designed a new system called ZOOSCAN.

Here we describe the zooplankton image-processing and

the (semi)-automatic recognition system using various

machine-learning methods. We discuss the system’s poten-

tial as a standard for obtaining identification, enumeration,

and size frequency distribution of net-collected zooplank-

ton samples.

Digitizing zooplankton samples

ZOOSCAN (Gorsky and Grosjean, 2003; but see also

http://www.zooscan.com) permits rapid and complete

analysis of preserved zooplankton samples and stores the

data in digital form (allowing easy sharing and retrieval of

the information; Grassle, 2000). The sample, or the

subsample, is poured directly into the scanning cell. Any
overlapping organisms are manually separated before the

sample is digitized, and both introduction and recovery of

the sample are simple and rapid. This process takes about

15 min. The instrument is not illustrated here because of an

ongoing patenting process.

The samples used in this study come from a 50-year series

sampled weekly at the permanent station off Villefranche sur

mer ( point B, see http://www.obs-vlfr.fr/Rade) and are

collected with vertical tows from 60 m to the surface with

a WP-2 net (200-mm mesh size), (UNESCO, 1968).

Image quality and image-processing

Samples are digitized with 2400-dpi resolution and the

resulting images are 17 500!7000 pixels in size. The re-

sulting quality (Figure 1) is suitable for taking morphometric

measurements and for classifying species, genera, or

families.

Pixel size is measured as 10.58 mm, with a standard

deviation/mean of 0.28%. Thus, distortions and variations

are negligible. Such a resolution is appropriate for

mesozooplankton analysis. A standard image with 16-bit

grey level requires approximately 250 Mb and can be

handled by recently acquired PCs. Figures 2e4 illustrate

the various steps in processing the picture.

Sample size

Both sampling and analysis processes should be optimized

in relation to the accuracy of the results. Not all species

appear with the same probability in a plankton community.

If rare species have to be considered, the sample size must

be large enough to include at least a few tens of individuals

of each taxon. Individual size-spectra by taxa can be com-

puted with ZOOSCAN because each individual is mea-

sured. Hence, a sample of 2000 individuals enables ca. 100

individuals to be measured for taxa that occur in as little as

5% of the whole population. This is a suitable starting point

for standard treatment of zooplankton samples.

If a whole sample is considered, large animals can be

present at very low density, compared to more abundant,

small animals (in an equivalent biomass in the same water

volume). Consequently, obtaining a sufficient number of

larger animals can result in digitization of an unnecessarily

large number of small ones. We have found that the best

strategy is to divide the sample by gently sieving into two

fractions, one containing animals !0.5 mm, the other of

animalsO0.5 mm.We have experimentally determined that

around 1500e2000 individuals for the small fraction is

a reliable number to allow separation of specimens in the

scanning cell of a 15!10 cm area. For the large fraction, the

number of individuals to scan ranges between 500 and 800.

Here we deal only with the small fraction. ZOOSCAN

performs well with the large fraction, but in this article we

focus on the smaller size classes because they are digitized

with a lower resolution (and thus are more difficult to

identify).

http://www.zooscan.com
http://www.obs-vlfr.fr/Rade
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Figure 1. Part of a raw digitized image at 2400 dpi (resolution of the displayed portion is 3000!1600 pixels). The whole scanned area

contains between 1000 and 2000 individuals.
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Subsampling

What is the optimal number of replicates or aliquots

containing around 2000 individuals of the small fraction

that can be scanned with ZOOSCAN for accuracy of the

measurements to be increased? To answer this question, we

used a Motoda splitter to subdivide a sample into 16

aliquots containing about 2000 individuals each. The 16

aliquots were scanned and analysed using ZOOSCAN. The

data from these replicates were pooled for analysis. No

attempt was made to identify animals. All images pooled

were considered to originate from a single unique

population (the zooplankton community).
As shown in Figure 5, the total number of blobs (separate

regions in the picture, detected as objects by the image

analysis) identified in the subsamples is not constant. The

total number ranges from 1457 to 3259, which is a twofold

increase between the two extremes. The mean number of

blobs identified in the 16 replicates is 2183. Obviously,

a single subsample does not allow accurate estimation of

the total number of individuals, and this conclusion will

probably apply to separate taxa, too.

To determine the 95% confidence interval on the total

number of blobs identified, we made a bootstrap analysis of

these replicates, pooled by 1, 2, 3, ., 16. The results are
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Figure 2. Same as Figure 1, but negative after background elimination and image enhancement. This picture is used for image analysis.
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presented in Figure 6. The accuracy of the mean number of

blobs is improved from a single subsample to duplicates

(from 2200G980 to 2200G690), but the gain decreases

exponentially with the number of replicates. Three or four

replicates (2200G570 and 2200G480, respectively) appear

to be a good trade-off between accuracy of the mean

number of blobs and sampling effort. Duplicates are

probably also acceptable when the number of samples is

high (high frequency time-series). It should be noted,

however, that these conclusions are drawn for samples

divided with the Motoda splitter. They could be different

with other splitting devices (Youngbluth, 1980). Longhurst
and Seibert (1967) found that use of the Folsom plankton

splitter is dependent on the skill of the operator, and this

may also be the case for the Motoda splitter.

Object recognition

In assessing the potential of discriminating various taxa

using automatic analysis of the images, we used a training

set of about 1000 objects from 14 different scans (various

samples in different seasons and years taken at a permanent

station with a vertical tow from 60 to 0 m using a WP-2
O
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Figure 4. Examples, at actual resolution, of contoured objects (blobs) during image analysis: copepods.
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net). The objects, selected so that the largest diversity in the

training set could be obtained, were manually classified into

eight groups (see Figure 7), and then into a more detailed

training set of 29 groups (Figure 8. In this more detailed

training set, we used a slightly larger number of individuals

(1127 instead of 1035 items in the 8-group set). With the 92

additional individuals, each category contains enough

individuals in the training set, that is, at least 8e10 items

per taxon.

Different classification algorithms were tested with both

training sets [linear, quadratic, mixture, and flexible

discriminant analysis (Hastie et al., 1994); k-nearest

neighbours; learning vector quantization (Tang et al.,

1998); tree and recursive partitioning methods, including

ensembles of bootstrapped tree, such as bagging and
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Figure 5. Total number of blobs identified in each replicate. The

average number of blobs (dotted line) is: 2183G515 (meanG
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Figure 6. Confidence interval of the mean number of images

identified in function of the number of replicated scans (10 000

bootstraps on the 16 samples for each number of replicates).
random forest (Breiman, 2001); support vector machine

(Meyer, 2001); feed-forward, single hidden layer neural

network (Simpson et al., 1992)]. We also tested methods in

which two or more different algorithms are combined, such

as double bagging with linear discriminant analysis or

k-nearest neighbours (Peters et al., 2002), and also discri-

minant vector forest, a new combined method that we have

set up specifically for analysing ZOOSCAN data and that

mixes linear discriminant analysis, learning vector quanti-

zation, and random forest (see Table 1). It would be

inappropriate here to detail the algorithms of all these

methods. Readers should consult the references cited.

Basically, all these techniques search for rules for

predicting the class of an object based on all the measure-

ments made. These are computed using the training set

where the class of these items is known (because it was

manually identified by the operator during the training

stage). At the end of this training stage, these various

methods are capable, with varying degrees of accuracy, to

predict the class of unknown objects, providing measure-

ments only, and this is applied on the whole digitized

series. It is this degree of accuracy that quantifies the

overall quality of a given algorithm in a particular

application. This is used as a criterion for deciding which

method is best suited for identifying automatically digitized

zooplankton measured with ZOOSCAN. Each object is

described by 27 parameters: size (length, width, .), shape

(elongation, compactness, .), moments ( first and second

order), and grey-levels distributions (minimal, maximal,

mean grey values, .).

It appears that the automatic recognition of zooplankton

is a difficult task for all of these methods, because the

intragroup variability is large and because the training set is

probably contaminated by errors made during manual

recognition of these objects by experts (Culverhouse et al.,

2003).

We have also observed limitations of several methods

(some discriminant analyses, as well as the neural network)

when the number of taxa increases and/or the number of

items in each taxon decreases (detailed training set). In

reject
Mollusks

Other gelatinous
Eggs

Copepods
Cladocerans

Chaetognaths
Appendicularians

Groups in the simplified training set (total = 1035)

Number of items
0 50 100 150 200 250

Figure 7. Composition of the simplified training set and number of

individuals in each group. The ‘‘reject’’ group contains all objects

that do not belong to the seven others (marine snow, phytoplank-

ton, and some other taxa of zooplankton that are present in low

proportions, that is, less than 0.5% in the series).
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Figure 8. Composition of the detailed training set and number of items in each group. The ‘‘reject’’ group is the same as in Figure 7.
s/article-abstract/61/4/518/60357
these cases, the learning phase either required an extremely

large amount of memory (the computer used was a Pentium

IV 1.6 Ghz with 1-Gb RAM memory) or took too long (the

process was stopped after 3 h of calculation). Other

methods appear much more robust to the number of taxa

simultaneously recognized (random forest and discriminant

vector forest performed almost equally well with the

simplified and detailed training sets, in terms of both

accuracy and speed). They are among the best methods in
each case. It is probably possible to develop even more

detailed training sets with such methods.

Combined methods appear more efficient in this context,

particularly double bagging with linear discriminant anal-

ysis and the new discriminant vector forest method. With

the latter, we reached an accuracy level of almost 75% with

the detailed training set.

A supplementary algorithm tags objects that are classified

with low accuracy by the discriminant vector forest method
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Table 1. Comparison of various recognition methods with both the simplified and the detailed training set (100 replicates with random 2/3

training set and 1/3 test set). Accuracy is the mean total recognition success as evaluated on the 100 replicates of the test set only. Speed is

the time required to perform one whole cycle (trainingC test). The symbol ‘‘e’’ means that the method did not succeed in making the

training set: either the 1-Gb RAM memory was exhausted or the operation took more than 3 h.

Method

Simplified (8 groups) Detailed (29 groups)

Accuracy (%) Speed (s) Accuracy (%) Speed (s)

Linear discriminant analysis 76.8 0.1 70.6 0.2

Quadratic discriminant analysis 82.9 0.2 e e
Mixture discriminant analysis 81.4 2.4 e e

Flexible discriminant analysis 77.6 1.8 72.7 6.0

k-nearest neighbour analysis 77.2 0.1 60.4 0.1

Learning vector quantization 76.6 0.3 60.0 0.4

Tree method 72.0 0.5 55.1 2.3

Recursive partitioning 72.8 1.2 57.7 3.1

Bagging (bootstrap on trees) 81.7 3.6 69.8 8.0

Double bagging with LDA 85.0 10.3 74.6 25.5

Double bagging with k-n.n. 81.9 8.9 70.1 13.8

Random forest 83.9 1.7 73.4 2.5

Support vector machine 68.5 1.2 47.8 1.9

Neural network 73.9 25.8 e e

Discriminant vector forest 83.6 2.7 74.4 4.0
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(suspect items). Using this algorithm, we designed a comple-

mentary semi-automatic and interactive analysis where

specialists can check and modify the choice made by the

computer for these suspect items. It is possible to adjust

the severity with which items are tagged as suspect. With the

severity parameter value between 0.25 and 0.75, up to

7e17% of items are tagged (see Table 2). After the checking

process, total accuracy increases to 80e85%.

Using a 1.6-Ghz Pentium IV computer with 1-Gb RAM

memory under Windows XP, our algorithm is capable of

recognizing 10 000 items in less than 5 s. This rate is fast

enough for a routine processing of large series containing

several million items requiring identification. The speed

criterion is one key aspect of such a system, although it was

rarely mentioned in early studies of this nature. There is not

much advantage in using a computer-based recognition

system if it is so slow that it does not speed up sample

treatment significantly.

Discussion

The study of zooplankton is traditionally conducted on

preserved samples from net tows. Various taxa (order,

family, genera, or species) are enumerated in each sample.

The degree of accuracy in the identification is experimenter-

dependent. Hence, systematic bias is introduced when

different specialists measure different fractions of the same

series. Moreover, the whole analysis must be done again

when a fine separation of taxa is required. Finally, the size

of the organisms is rarely recorded simultaneously with

identification. Consequently, the sample treatment is

usually not optimal and represents only a small fraction

of the information contained in the sample.

The capability of ZOOSCAN in digitizing and (semi)-

automatically classifying zooplankton to taxa was explored

using images from a multi-annual series of WP-2 net tows

Table 2. Percentage of suspect items with the detailed training set

(29 groups) and the discriminant vector forest method as a function

of severity. The accuracy level increases after re-identification of

these suspect items by the specialist.

Severity parameter % Suspect items

Accuracy after

re-identification of

suspect items (%)

0.00 0.0 74.4

0.25 7.0 79.8

0.5 13.0 83.8

0.75 16.8 85.6

1.00 22.1 87.2

1.25 27.1 89.6

1.50 30.6 89.9

1.75 35.4 90.9

2.00 40.7 94.1
in the northwest Mediterranean Sea (data and analysis of

the whole series will be published elsewhere). A training

set was developed and manually identified by experts.

1. It appears that the quality of the images is high enough

to discriminate among at least 29 different taxa, by

examining the organisms on screen and also by using

custom-made software, with a reasonable level of

accuracy (about 75% for the automated computer

method).

2. It appears that the complementary semi-automatic

method that combines both computer and human skills

increases the recognition level to 85% or even more.

3. It appears that gain in speed (one scan is acquired and

treated in less than 20 min), ease of use (digital images

are easier to analyse than biological material under the

microscope, and they can be shared, possibly through

the Internet), and quantity of information (both

individual size and nature of the particles is de-

termined) mean that use of computerized systems

based on image analysis is more advantageous in

processing net zooplankton samples in comparison to

manual processing.

The object classification algorithm must be able to

discriminate between a fairly large number of taxa

(typically, a few tens) with an accuracy level between

75% and 90%. The computerized system must also be

much faster than manual handling of the same samples.

Those two aspects, accuracy of recognition level with large

numbers of taxa (which require high-resolution imaging of

the organisms) and speed, were previously the major

impediments to the development of automated methods.

The current version of the ZOOSCAN system matches

these requirements, thanks to a new combined algorithm

known as discriminant vector forest.

A complete automated system is not, and should not be, the

solution for zooplankton samples that require identification

to the species level in species-rich collections. A certain level

of control by the biologist is necessary. In this way, one can

combine human skill to discriminate animals on basis of

small details (presence/absence or number of appendages, for

instance) with the computer potentials to better analyse

volumes and grey-levels distribution. The automated ap-

proach simplifies and speeds up the classification process by

computer recognition. The complementary semi-automated

approach that we propose here uses both the computer and

human classification for the 10e15% most difficult speci-

mens in the samples in order to increase the overall

recognition accuracy up to 85%.
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