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3 Arctic Ocean 
 

Nicholas R. Bates, Todd D. O’Brien, and Laura Lorenzoni 

 

Figure 3.1. Map of IGMETS-participating Arctic Ocean time series on a background of 10-year time-window (2003–2012) sea surface 

temperature trends (see also Figure 3.3). At the time of this report, the Arctic Ocean collection consisted of 16 time series (coloured 

symbols of any type), of which two were from Continuous Plankton Recorder subareas (blue boxes). Un-coloured (gray) symbols indi-

cate time series being addressed in a different regional chapter (e.g. North Atlantic, North Pacific). Dashed lines indicate boundaries 

between IGMETS regions. See Table 3.3 for a listing of this region’s participating sites. Additional information on the sites in this study 

is presented in the Annex. 
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3.1 Introduction  

The Arctic Ocean has experienced rapid and complex 

environmental changes over the last few decades in re-

sponse to changes in climate and physical forcing that 

influence Arctic atmospheric properties, air–cryosphere–

ocean interaction and exchanges, and terrestrial inputs. 

Atmospheric warming (Overland et al., 2014) and chang-

es in the terrestrial hydrological cycle of the region, 

combined with physical circulation and gateway ex-

change of the Arctic have contributed to well-

documented summertime sea ice loss (Serreze et al., 

2000; Polyakov et al., 2002, 2012; Maslanik et al., 2007; 

Markus et al., 2009; Perovich et al., 2007, 2014; Stroeve et 

al., 2007, 2014; Perovich and Richter-Menge, 2009; Wang 

and Overland, 2009; Screen et al., 2013; Overland and 

Wang, 2013; Simmonds and Goverkar, 2014; Frey et al., 

2014a,b, 2015). The rapid loss of sea ice is the most rec-

ognizable phenomena associated with the emerging 

“new Arctic” climate (Carmack et al., 2015). 

These physical changes have resulted in changes in the 

biology and biogeochemistry of the shallow and deep 

areas of the Arctic Ocean (Grebmeier et al., 2010; 

Wassmann et al., 2011). Increased ice-free waters and 

warmer temperatures appear to have caused changes in 

rates of primary production in the deep Arctic (Pabi et 

al., 2008; Arrigo et al., 2008, 2012, 2014; Arrigo and van 

Dijken, 2011) and associated shelves (Ardyna et al., 

2014). They have affected the seasonal timing of the an-

nual phytoplankton bloom (Kahru et al., 2010), the

 

 

Figure 3.2. Schematic of major current systems, bays, and seas in the IGMETS-defined Arctic Ocean region. Red arrows indicate gener-

ally warmer water currents; blue arrows indicate generally cooler water currents. In this and subsequent figures, the Arctic Ocean re-

gion includes the Barents Sea, Siberian Shelf seas, Chukchi Sea, Beaufort Sea, Canadian Archipelago, and the central Arctic basins, but 

does not include the marginal seas (i.e. Greenland–Iceland–Norwegian Sea, Labrador Sea, Hudson Bay, Bering Sea). See “Methods” 

chapter for a complete description and methodology used. 
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composition of the phytoplankton (Li et al., 2009), and 

have shifted higher trophic-level pelagic and benthic 

communities (Grebmeier et al., 2015). The biogeochemi-

cal dynamics of carbon and nutrients have also been 

altered (McGuire et al., 2006; Macdonald et al., 2008), 

with an acceleration in the biological pump of carbon 

leading to enhanced export of carbon to the deep ocean 

(Lalande et al., 2009, 2014a; Nishino et al., 2011), and ul-

timately ocean carbon dioxide (CO2) uptake and ocean 

acidification (OA) impacts in the region (Orr et al., 2005; 

Bates et al., 2006; Bates and Mathis, 2009; Steinacher et al., 

2009; Takahashi et al., 2009; Manizza et al., 2013; Schuster 

et al., 2013; Bates, 2015). Loss of sea ice appears to be 

increasing momentum transfer to the ocean, increasing 

gateway inflows and outflows (Woodgate et al., 2015), 

and increasing circulation and mixing (Rippeth et al., 

2014). This may have additional unknown implications 

for the biological communities and biogeochemical cy-

cling of carbon and nutrients in the region.  

The harsh polar climate and difficulties in sampling the 

Arctic Ocean have resulted in few sustained observa-

tions of ocean physics, biology, and biogeochemistry. As 

such, there remains much uncertainty about the present 

ocean function and understanding about the future re-

sponse of the Arctic Ocean to rapid environmental 

change. However, the few existing time series that occu-

py Arctic waters have provided invaluable information 

that has enabled the understanding we now have of the 

dramatic changes the region has undergone (Figure 3.1). 

3.2 Physical setting of the Arctic Ocean  

The relatively small Arctic Ocean (ca. 10.7 x 106 km2) is 

almost completely landlocked except for the gateways at 

the Bering Strait and Canadian Archipelago and the 

Fram Strait and Barents Sea that allow exchanges with 

the Pacific and Atlantic oceans, respectively (Figure 3.2). 

The Arctic Ocean is dominated by interocean exchanges 

between the Pacific and Atlantic oceans (Macdonald et 

al., 2008) and subsequent physical and biogeochemical 

modifications and transformations of water. This in-

cludes river inputs of freshwater and materials 

(McGuire et al., 2006; Cooper et al., 2008), sea ice produc-

tion and melting (Peterson et al., 2002; Carmack and 

Chapman, 2003), and atmosphere–ocean interaction (Ri-

gor et al., 2002; Overland and Wang, 2005; Wang et al., 

2005) and exchanges, which combined, act to dictate 

water column stratification (Aagaard et al., 1981; Rudels 

et al., 1996) and circulation and residence time in the 

Arctic. The inputs to the Arctic in descending order in-

clude: Atlantic inflow through Fram Strait and via the 

Barents Sea of  ca. 5–6 Sv (Sv = sverdrup = 106 m3 s–1); 

Pacific inflow (through Bering Strait) of ca. 1 Sv (Wood-

gate et al., 2005; 2015); and freshwater inputs of ca. 0.10–

0.14 (Aagaard and Carmack, 1989; Wijffels et al., 1992; 

Fahrbach et al., 2001; Macdonald et al., 2008), with out-

flow through the Canadian Archipelago, across the Bar-

ents Sea, and through Fram Strait. 

The relatively broad, generally shallow (< 200 m deep) 

continental shelves surrounding the central basin com-

prise about 53% of the area of the Arctic Ocean (Mac-

donald et al., 2008). Each of the Arctic continental shelves 

is unique and thus difficult to characterize generically. 

As a simplification, the Chukchi and Barents seas can be 

characterized as “inflow” shelves (Carmack and 

Wassmann, 2006), with inflow of warm, nutrient-rich 

waters from the Pacific and Atlantic, respectively (Mül-

ler-Karger et al., 1987; Nihoul et al., 1993; Hopcroft and 

Day, 2013; Cai et al., 2014; Grebmeier et al., 2015). The 

Siberian shelves (i.e. Kara, Laptev, and East Siberian Sea) 

and the Beaufort Sea (Mackenzie Shelf) constitute “inte-

rior shelves” and are highly influenced by exchanges 

with other shelves and freshwater inputs. The Canadian 

Archipelago represents an “outflow shelf” where Arctic 

water is exported via Hudson Bay and Baffin Bay to the 

Atlantic Ocean. In the deep central basin of the Arctic 

Ocean, waters of the Canada Basin or Beaufort Gyre are 

separated from the Eurasian Basin by the surface trans-

polar drift. Strong seasonal atmosphere–ocean interac-

tion (e.g. changes in Arctic Dipole Anomaly; Ogi and 

Wallace, 2012; Overland et al., 2012), sea ice production 

and melting (e.g. associated with Arctic Sea Ice Oscilla-

tion; Frey et al., 2014a, 2015), lateral transports of water 

(Coachman, 1993; Danielson et al., 2014), and freshwater 

inputs dictate the physical setting of the Arctic and its 

biological and biogeochemical characteristics.  

The geographic scope of this review encompasses the 

Arctic Ocean shelves (i.e. Barents, Kara, Laptev, East 

Siberian, Chukchi, Beaufort, and Canadian Archipelago 

seas) and central basin (i.e. Canada and Eurasian Basin), 

but does not extend past the gateways of the Arctic 

Ocean to the Greenland, Iceland, Norwegian, and Bering 

seas, and Hudson and Baffin bays.  
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Figure 3.3. Annual trends in the Arctic Ocean region sea surface temperature and chlorophyll for each of the standard IGMETS time-

windows. See “Methods” chapter for a complete description and methodology used. 
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3.3 Trends in the Arctic Ocean 

3.3.1 Pan-Arctic Ocean sea ice and hydrologi-

cal changes 

The synergistic interactions among atmospheric warm-

ing, pressure changes associated with the Arctic Dipole 

Anomaly, air–sea interaction, and Arctic amplification 

(e.g. the drivers of pan-Arctic change; Holland and Bitz, 

2003; IPCC, 2007, 2014; Serreze et al., 2007; Serreze and 

Stroeve, 2009; Stroeve et al., 2014) have brought about an 

Arctic-wide reduction in sea ice extent and thickness, 

especially during the last decade (Polyakov et al., 2012; 

Lindsay and Schweiger, 2015). The loss of multiyear ice 

and summer sea ice has been accompanied by earlier 

melt onset in spring and later freeze-up in autumn 

(Stroeve et al., 2012; Parkinson, 2014; Frey et al., 2015; 

Wood et al., 2015). Summer sea ice concentrations have 

declined in most Arctic marginal seas (Stroeve et al., 

2014), particularly in areas where multiyear sea ice used 

to prevail. In the central Arctic, annual mean sea ice 

thickness has decreased by 65% from 3.59  to 1.25 m 

since 1975 (Lindsay and Schweiger, 2015). As noted by 

Wood et al. (2015), the primary regulation of the upper 

ocean environment has shifted from a once stable sea 

ice-dominated system (Kwok and Unstersteiner, 2011) 

toward a system more sensitive to variable meteorologi-

cal forces, especially wind and waves, and to cloud-

cover-mediated radiation (Kay et al., 2008; Perovich and 

Polashenski, 2012; Jeffries et al., 2013; Timmermans, 

2015; Wang et al., 2015).  

Analysis of sea surface temperature from available grid-

ded satellite data indicates that over 85% (79% at 

p < 0.05) of the Arctic Ocean has warmed over the past 

30 years (Table 3.1, Figure 3.2). This warming trend has 

been sustained in the Chukchi, Barents, and Kara seas, 

and in Baffin Bay and Davis Strait (Figure 3.3a). Of the 

limited number of sustained field observations in the 

Arctic, several time-series sites in the Barents Sea (i.e. 

Fugløya-Bjørnøya North, Fugløya-Bjørnøya South, 

Vardø-Nord North, and Vardø-Nord South) exhibit sim-

ilar trends over the past 15–30 years. Across much of the 

central basins and several of the marginal seas of the 

Arctic, there are insufficient data to establish trends due 

primarily to cloud cover and sea ice extent. At the pe-

riphery of the Arctic Ocean, warming has been observed 

in the Greenland–Iceland–Norwegian (GIN) seas, whilst 

modest regional cooling has been observed in the Bering 

Strait and in the Fram Strait in the region of the outflow 

from the central Arctic Basin. 

Over shorter time-scales, regional variability of the cou-

pled atmosphere–ocean system does not show ubiqui-

tous warming trends within the Arctic Ocean. In the 

Chukchi Sea, modest cooling is observed over the past 

ten years or so (Wood et al., 2015) (Figure 3.3a). Howev-

er, this appears to relate to a shift in the Arctic Dipole 

(and its related wind field) in 2012 that allowed sea ice 

to persist in the Chukchi Sea longer during summer de-

spite a record-low sea ice extent for the pan-Arctic. Fluc-

tuations in regional wind fields also contribute to gate-

way flows through the Bering Strait (Coachman, 1993; 

Danielson et al., 2014) that, in turn, impact the upwelling 

and transport of nutrient-rich Pacific water into the Arc-

tic (Coachman and Shigaev, 1992; Nihoul et al., 1993; 

Hopcroft and Day, 2013). In the Barents Sea, two out of 

the four longer-term time series show modest cooling. 

These examples illustrate the complex short-term and 

longer-term feedbacks operating in the Arctic Ocean. 

The warming is also likely to have been accompanied by 

salinity changes, with a freshening of the polar mixed 

layer associated with increased sea ice melt and freshwa-

ter inputs. While significant freshening has been ob-

served over the past 30 years in the periphery of the Arc-

tic (e.g. Baltic Sea and near Iceland), lack of sustained 

observations precludes any summary of salinity changes 

in the Arctic Ocean itself. In the Barents Sea, four time-

series sites (i.e. Fugløya-Bjørnøya North, Fugløya-

Bjørnøya South, Vardø-Nord North, and Vardø-Nord 

South) show increased salinity over the past 15–30 years, 

presumably reflecting the influence of increased Atlantic 

water in the surface ocean (Table 3.1, Figure 3.4). This 

mixture of trends underscores the regional complexities 

in surface stratification, dictated by a balance of buoyan-

cy input, freshwater inflow, and mixing processes 

(Tremblay and Gagnon, 2009; Carmack and McLaughlin, 

2011; Popova et al., 2012).  

 

3.3.2 Sea surface chlorophyll and primary 

production in the Arctic Ocean 

Observations of chlorophyll biomass derived from 

MODIS and Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) in the Arctic Ocean during 1998–2012 are lim-

ited by the presence of clouds and sea ice cover in the 

region. During 1998–2010, cloudiness has increased,  
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Table 3.1. Relative spatial areas (% of the total region) and rates of change within the Arctic Ocean region that are showing increasing 

or decreasing trends in sea surface temperature (SST) for each of the standard IGMETS time-windows. Numbers in brackets indicate 

the % area with significant (p < 0.05) trends. See “Methods” chapter for a complete description and methodology used. 

 

Table 3.2. Relative spatial areas (% of the total region) and rates of change within the Arctic Ocean that are showing increasing or de-

creasing trends in phytoplankton biomass (CHL) for each of the standard IGMETS time-windows. Numbers in brackets indicate the % 

area with significant (p < 0.05) trends. See “Methods” chapter for a complete description and methodology used. 

 

 

 

 

 

 

 

 

  

Latitude-adjusted SST data field  

surface area = 10.6 million km2 

5-year  
(2008–2012) 

10-year  
(2003–2012) 

15-year  
(1998–2012) 

20-year  
(1993–2012) 

25-year  
(1988–2012) 

30-year  
(1983–2012) 

Area (%) w/ increasing SST trends 

(p < 0.05) 
59.9% 

( 22.1% ) 

46.0% 

( 26.6% ) 
83.0% 

( 66.2% ) 
83.8% 

( 74.3% ) 
86.5% 

( 75.0% ) 
85.3% 

( 79.2% ) 

Area (%) w/ decreasing SST trends 

(p < 0.05) 

40.1% 

( 13.6% ) 
54.0% 

( 27.2% ) 

17.0% 

( 7.7% ) 

16.2% 

( 6.8% ) 

13.5% 

( 5.5% ) 

14.7% 

( 7.4% ) 

       

> 1.0°C decade–1 warming 

(p < 0.05) 

17.6% 

( 12.9% ) 

5.4% 

( 5.4% ) 

4.9% 

( 4.9% ) 

0.8% 

( 0.8% ) 

0.2% 

( 0.2% ) 

0.1% 

( 0.1% ) 

0.5 to 1.0°C decade–1 warming 

(p < 0.05) 

9.3% 

( 3.9% ) 

8.3% 

( 8.0% ) 

9.8% 

( 9.8% ) 

17.2% 

( 17.2% ) 

4.4% 

( 4.4% ) 

1.8% 

( 1.8% ) 

0.1 to 0.5°C decade–1 warming 

(p < 0.05) 

20.5% 

( 4.7% ) 

15.7% 

( 8.9% ) 

29.4% 

( 25.4% ) 

24.9% 

( 24.3% ) 

37.0% 

( 36.7% ) 

38.6% 

( 38.5% ) 

0.0 to 0.1°C decade–1 warming 

(p < 0.05) 

12.7% 

( 0.5% ) 

16.6% 

( 4.3% ) 

39.0% 

( 26.2% ) 

40.9% 

( 32.1% ) 

44.9% 

( 33.6% ) 

44.8% 

( 38.8% ) 

0.0 to –0.1°C decade–1 cooling 

(p < 0.05) 

15.6% 

( 1.8% ) 

28.4% 

( 8.8% ) 

11.0% 

( 2.6% ) 

12.9% 

( 4.0% ) 

11.8% 

( 4.0% ) 

12.9% 

( 5.9% ) 

–0.1 to –0.5°C decade–1 cooling 

(p < 0.05) 

11.4% 

( 3.0% ) 

19.7% 

( 12.8% ) 

4.9% 

( 3.9% ) 

3.3% 

( 2.7% ) 

1.7% 

( 1.4% ) 

1.7% 

( 1.4% ) 

–0.5 to –1.0°C decade–1 cooling 

(p < 0.05) 

6.7% 

( 3.4% ) 

4.8% 

( 4.5% ) 

1.1% 

( 1.1% ) 

0.0% 

( 0.0% ) 

0.0% 

( 0.0% ) 

0.0% 

( 0.0% ) 

> –1.0°C decade–1 cooling 

(p < 0.05) 

6.3% 

( 5.4% ) 

1.1% 

( 1.1% ) 

0.1% 

( 0.1% ) 

0.0% 

( 0.0% ) 

0.0% 

( 0.0% ) 

0.0% 

( 0.0% ) 

Latitude-adjusted CHL data field  

surface area = 10.7 million km2 

5-year  

(2008–2012) 
10-year  

(2003–2012) 
15-year  

(1998–2012) 

Area (%) w/ increasing CHL trends  

(p < 0.05) 

25.7% 

( 1.8% ) 
56.5% 

( 14.3% ) 
60.8% 

( 21.7% ) 

Area (%) w/ decreasing CHL trends  

(p < 0.05) 
74.3% 

( 30.2% ) 

43.5% 

( 9.0% ) 

39.2% 

( 8.3% ) 

    

> 0.50 mg m–3 decade–1 increasing   

(p < 0.05) 

7.1% 

( 1.0% ) 

10.1% 

( 5.8% ) 

9.7% 

( 7.2% ) 

0.10 to 0.50 mg m–3 decade–1 increasing   

(p < 0.05) 

11.0% 

( 0.7% ) 

20.9% 

( 6.8% ) 

20.3% 

( 9.8% ) 

0.01 to 0.10 mg m–3 decade–1 increasing  

(p < 0.05) 

6.7% 

( 0.1% ) 

22.6% 

( 1.6% ) 

26.0% 

( 4.5% ) 

0.00 to 0.01mg m–3 decade–1 increasing  

(p < 0.05) 

0.9% 

( 0.1% ) 

3.0% 

( 0.0% ) 

4.8% 

( 0.2% ) 

0.00 to –0.01mg m–3 decade–1 decreasing 

(p < 0.05) 

0.9% 

( 0.0% ) 

2.9% 

( 0.1% ) 

4.2% 

( 0.1% ) 

–0.01 to –0.10 mg m–3 decade–1 decreasing  

(p < 0.05) 

9.6% 

( 0.5% ) 

20.7% 

( 1.9% ) 

23.1% 

( 3.8% ) 

–0.10 to –0.50 mg m–3 decade–1 decreasing 

(p < 0.05) 

31.0% 

( 10.7% ) 

15.4% 

( 4.9% ) 

9.9% 

( 3.4% ) 

> –0.50 mg m–3 decade–1 decreasing  

(p < 0.05) 

32.8% 

( 19.0% ) 

4.4% 

( 2.1% ) 

2.0% 

( 1.0% ) 
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leading to reduced incoming solar radiation across the 

pan-Arctic region (Belanger et al., 2013). In addition, 

satellite retrieval algorithms of chlorophyll are con-

founded by the signals of river turbidity in coastal re-

gions (Demidov et al., 2014), chlorophyll maxima deeper 

than the optical depth of satellite sensor capabilities 

(Ardyna et al., 2013), and the contribution of coloured 

dissolved organic material (CDOM) to assessment of 

chlorophyll a biomass (Siegel et al., 2005). This latter con-

founding signal is of particular importance to Arctic 

marginal seas where substantial riverine CDOM or col-

oured detrital materials are supplied from the Arctic 

watersheds. 

Given the above caveats, chlorophyll biomass has in-

creased during 1998–2012 in over 60% (22% at p < 0.05) 

of the Arctic Ocean, and especially over continental 

margins (Table 3.2, Figure 3.3b). This finding is con-

sistent with other studies showing increases in Arctic 

Ocean chlorophyll biomass (Arrigo et al., 2008, 2012, 

2014; Pabi et al., 2008; Arrigo and van Dijken, 2011; Ar-

dyna et al., 2014). More recently, Frey et al. (2014b) report 

higher chlorophyll biomass in 2014 relative to mean val-

ues in 2003–2013. As we show in Figures 3.3b, 3.4b, and 

4.4c, the largest increases in chlorophyll biomass oc-

curred in the Laptev, Kara, and Barents seas, with this 

finding similar to studies of Petrenko et al. (2013) and 

Frey et al. (2014). These longer-term trends in chloro-

phyll biomass appear consistent with global ocean in-

creases over the past 20–50 years shown by McQuatters-

Gollop et al. (2011) (in contrast to declines in marine 

phytoplankton reported by Boyce et al., 2010 using Sec-

chi disk and other data). The seasonal timing of the an-

nual phytoplankton bloom has become earlier (Kahru et 

al., 2010), and there is evidence for an autumn bloom 

now occurring in the Arctic marginal seas (Ardyna et al., 

2014). Early satellite studies of the Bering Sea also 

showed evidence of an autumn bloom (Müller-Karger et 

al., 1990), with either the Arctic now experiencing similar 

phenomena to the Bering Sea or increased observations 

in the Arctic have simply revealed the occurrence of a 

pre-existing seasonal phenomenon.  

Over the past five years (2008–2012), chlorophyll bio-

mass in the marginal seas decreased over 74% (30% at 

p < 0.05) of the Arctic Ocean (Figures 3.3b, 3.4b, and 3.4c; 

Table 3.2). The causes for this decline in marine phyto-

plankton are uncertain. It may be related to reduced 

solar radiation due to increased cloudiness (Belanger et 

al., 2013), or deepening of the chlorophyll maximum 

(Monier et al., 2014). For example, Bergaron and Trem-

blay (2014) have shown a deepening of the nitracline 

and subsurface chlorophyll maximum, with diatoms 

consuming nutrients over a greater water depth. Light 

and nutrient availability in the Arctic Ocean appears to 

be one of the primary drivers of marine phytoplankton 

biomass and primary production (Popova et al., 2010). 

Challenges remain in establishing trends in marine phy-

toplankton abundance, depth-integrated chlorophyll 

concentration, and rates such as primary production in 

the Arctic Ocean. For example, Petrenko et al. (2013) 

suggest that the Barents and Greenland seas are the 

most productive in the Arctic, with the East Siberian and 

Chukchi seas the least productive. This satellite-derived 

finding contrasts markedly with evidence that the high-

est rates of in situ primary production (Müller-Karger et 

al., 1987; Walsh et al., 1989; Cota et al., 2004; Arrigo et al., 

2012) and net community production (from inorganic 

nutrient and dissolved inorganic carbon changes; Bates 

and Mathis, 2009; Codispoti et al., 2013) in the Arctic are 

found in the Chukchi Sea, with the Barents Sea a close 

second (Dalpadado et al., 2014). What remains consistent 

is that the Arctic marginal seas are productive (Müller-

Karger and Alexander, 1987; Müller-Karger et al., 1987, 

1990; Walsh et al., 1989; Hill and Cota, 2005; Arrigo et al., 

2014; Ulfsbo et al., 2014) compared to the highly oligo-

trophic central basins (English, 1961; Moran et al., 1997; 

Wheeler et al., 1996; Lalande et al., 2014b). 

The loss of sea ice will also affect the standing stocks of 

sea ice algae, their rates of primary production, and their 

importance to the marine biochemical cycles of the Arc-

tic (Legendre et al., 1992). Dupont (2012) estimates that 

sea ice biology contributes about 7.5% of the total prima-

ry production for the entire Arctic Ocean, with declining 

sea ice extent presumably reducing the contribution to 

carbon and nutrient cycling in the Arctic (Boetius et al., 

2014). 
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Figure 3.4. Map of Arctic Ocean region time-series locations and trends for select variables and IGMETS time-windows. The Arctic 

Ocean region is defined in the Figure 3.2 caption. Upward-pointing triangles indicate positive trends; downward triangles indicate 

negative trends. Gray circles indicate time-series site that fell outside of the current study region or time-window. Additional variables 

and time-windows are available through the IGMETS Explorer (http://IGMETS.net/explorer). See “Methods” chapter for a complete 

description and methodology used. 
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3.4 Zooplankton changes 

The response of zooplankton to the physical and biolog-

ical changes occurring in the Arctic is mixed and diffi-

cult to assess due to limited time-series observations. 

Over the past ten years, zooplankton appear to have 

increased in the White Sea (Usov et al., 2013) and in the 

Barents Sea, the latter often concomitant with surface 

warming, increased chlorophyll biomass, and primary 

production (Dalpadado et al., 2014). Such increases in 

primary production are also observed in the Fram Strait 

adjacent to the Barents Sea (Cherkasheva et al., 2014). 

Over longer time-scales (15+ years), zooplankton appear 

to have declined at three of the four Barents Sea time-

series sites and at the White Sea site. Unfortunately, oth-

er concomitant ecological data (e.g. diatom, dinoflagel-

late, and nutrient concentrations) were lacking from 

these sites. 

Elsewhere on the Siberian shelves and central basins of 

the Arctic, ecological data are scarce, making it difficult 

to assess trends. However, in the Chukchi Sea, Ershova 

et al. (2015) report a significant increase in large copepod 

biomass (primarily Calanus glacialis and other calanid 

taxa) between 1946 and 2012, concomitant with longer-

term warming. Of note is a more recent decline in cope-

pod biomass (2004–2012) that accompanies the modest 

cooling of the region and a decline in primary produc-

tion (Lee et al., 2013). 

3.5 Conclusions 

In general, the surface Arctic Ocean has been steadily 

warming over the past 30 years. Chlorophyll biomass, as 

determined by satellite observations, has increased 

slightly over the past 15 years. The complexity of the 

Arctic marginal seas and the central basin settings cou-

pled with a scarcity of in situ data only allows us to surf-

icially assess biogeochemical and biological community 

changes across the pan-Arctic. 
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Table 3.3. Time-series sites located in the IGMETS Arctic Ocean subarea.  Participating countries: Denmark (dk), Faroe Islands (fo), 

Iceland (is), Norway (no), Russia (ru), United Kingdom (uk), and United States (us). Year-spans in red text indicate time series of un-

known or discontinued status. IGMETS-IDs in red text indicate time series without a description entry in the Annex A1. 

No. IGMETS-ID Site or programme name Year-span T S Oxy Ntr Chl Mic Phy Zoo 

1 dk-10101 

Hellefiske Bank – S1 

(West Greenland) 

1950–1984 

(?) 
X - - - - - - X 

2 dk-10102 

Sukkertop Bank – S2  

(West Greenland) 

1950–1984 

(?) 
X - - - - - - X 

3 fo-30101 

Faroe Islands Shelf 

(Faroe Islands) 

see North Atlantic Annex (A2) 

1991–

present 
X - - X X - - X 

4 fo-30102 

Norwegian Sea Transect – North 

(North Faroe Islands) 

1990–

present 
X - - - X - - X 

5 fo-30103 

Norwegian Sea Transect – South 

(North Faroe Islands) 

1990–

present 
X - - - X - - X 

6 is-30101 
Siglunes Transect  

(North Iceland) 

1952–

present 
X X - - X - - X 

7 no-50101 

Svinøy Transect – East  

(Norwegian Sea) 

1994– 

present 
- - - - X - - X 

8 no-50102 

Svinøy Transect – West  

(Norwegian Sea) 

1994– 

present 
- - - - X - - X 

9 no-50201 

Fugløya-Bjørnøya Transect – North 

(Western Barents Sea) 

1990– 

present 
X X - - X - - X 

10 no-50202 

Fugløya-Bjørnøya Transect – South 

(Western Barents Sea) 

1990– 

present 
X X - - X - - X 

11 no-50301 

Vardø-Nord Transect – North 

(Central Barents Sea) 

1990– 

present 
X X - - X - - X 

12 no-50302 

Vardø-Nord Transect – South 

(Central Barents Sea) 

1990– 

present 
X X - - X - - X 

13 ru-10101 

Kartesh D1  

(White Sea) 

1961– 

present 
X X - - - - - X 

14 uk-40101 

SAHFOS-CPR A01  

(Norwegian Sea) 

1958– 

present 
- - - - X - X X 

15 uk-40114 

SAHFOS-CPR B04 

(Southern Norwegian Sea) 

1958– 

present 
- - - - X - X X 

16 us-50604 

EMA-4: Chukchi Sea  

(Chukchi Sea) 

2003– 

present 
X X - X X - - - 

  

http://igmets.net/sites/?id=dk-10101
http://igmets.net/sites/?id=dk-10102
http://igmets.net/sites/?id=fo-30101
http://igmets.net/sites/?id=fo-30102
http://igmets.net/sites/?id=fo-30103
http://igmets.net/sites/?id=is-30101
http://igmets.net/sites/?id=no-50101
http://igmets.net/sites/?id=no-50102
http://igmets.net/sites/?id=no-50201
http://igmets.net/sites/?id=no-50202
http://igmets.net/sites/?id=no-50301
http://igmets.net/sites/?id=no-50302
http://igmets.net/sites/?id=ru-10101
http://igmets.net/sites/?id=uk-40101
http://igmets.net/sites/?id=uk-40114
http://igmets.net/sites/?id=us-50604
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