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a  b  s  t  r  a  c  t

Modern  statistical  fishery  stock assessment  models  rarely  account  for temporal  variability  in mean
length-at-age,  and  almost  never  describe  cohort-specific  effects.  This  study  employs  techniques  for dis-
cerning  temporal  change  to mean  length-at-age  from  fisheries  data  and  introduces  recently  developed
stock  assessment  methods  to  account  for  this  variability.  Using  Stock  Synthesis,  a statistical  catch-at-age
modelling  framework,  a stock  assessment  to account  for  cohort-specific  variability  in  mean  length-at-
age  was  developed  for blue  grenadier,  Macruronus  novaezelandiae, an  important  commercial  species  in
tock assessment
ntegrated analysis
tock Synthesis

Australia’s Southern  and  Eastern  Scalefish  and  Shark  Fishery.  Key  outputs  of  a standard  stock  assessment
model  that  assumes  static  growth  were  compared  to those  of  an  alternative  model  that  accounts  for
observed  variability  in length-at-age.  Comparisons  show that  accounting  for  variable  growth  provides
a better  fit to  time-series  data  and results  in significant  differences  to key  population  estimates.  These

tions  

g  reco

differences  have  implica
scientific  advice  regardin

. Introduction

Variability in somatic growth is a widely acknowledged phe-
omenon for harvested fish species, with recent studies showing
ean length-at-age can vary year-by-year (Arnekleiv et al., 2006),

patially (Gaertner et al., 2008), and between cohorts (Feltrim and
rnst, 2010). Such variability has been attributed to environmen-
al change, intra- or inter-specific competition, and abiotic factors
uch as fishing induced changes to population size. Changes to
rowth are often accounted for using year-specific mean weight-at-
ge estimates in Virtual Population Analyses (VPA), but are rarely
ccounted for in contemporary statistical fisheries stock assess-
ent models. Instead, these models generally assume growth is

tatic through time, and use pooled age–length data to estimate a
ime-invariant length-at-age relationship (e.g. PFMC, 2009; Tuck,
011). For many fisheries this assumption is necessary because the

ong-term data required to determine variation is unavailable. For
thers, the simplified approach is taken because a constant length-
t-age relationship is thought to be adequate for stock assessment

urposes.

Age–length data are collected routinely for many species as
art of scientific monitoring programs for Australia’s Southern and

∗ Corresponding author at: Department of Zoology, The University of Melbourne,
arkville, VIC 3010, Australia. Tel.: +61 8344 4872; fax: +61 8344 7909.

E-mail address: athol.whitten@mezo.com.au (A.R. Whitten).

165-7836/$ – see front matter ©  2012 Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.fishres.2012.06.021
for the estimation  of  quantities  important  to management  and  thus  to
mmended  catch  levels.
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Eastern Scalefish and Shark Fishery (SESSF), and are an important
source of information for stock assessments (Smith et al., 2001).
Age-length data and growth estimates enable the conversion of
catch or abundance values in weight to catch or abundance in num-
bers, and are necessary for length composition predictions that are
fit to observed length composition data when estimating model
parameters. Availability of long time-series of age-length data for
stocks such as the highly valued and abundant blue grenadier,
Macruronus novaezelandiae, presents an opportunity to investigate
if changes to mean length-at-age can affect the results of stock
assessments.

Blue grenadier are found around the entire southern Australian
coastline, including Tasmania. It is a moderately long-lived species
with a maximum age of about 23 years (Russell and Smith, 2006).
Maturity occurs around age four for males and age five for females,
with length at 50 percent maturity being 57 cm for males and
64 cm for females (Russell and Smith, 2006). The species is char-
acterized by highly variable recruitment, and the fishery has been
largely sustained by a few very strong cohorts over the past 10–15
years. The fishery is divided into two sub-fisheries for assessment
purposes: a ‘spawning’ sub-fishery operating on the spawning
stock off the western coast of Tasmania in winter (June through
August), and a ‘non-spawning’ sub-fishery operating in all other

parts of the fishery at all other times (Punt et al., 2001; Tuck,
2009). Management of the fishery is implemented through catch
limits specified via a harvest control rule. The harvest control rule
requires estimates of current absolute and relative biomass from

dx.doi.org/10.1016/j.fishres.2012.06.021
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:athol.whitten@mezo.com.au
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he assessment to calculate recommended catch limits (Smith et al.,
008).

The assessment method is based on the integrated analysis
aradigm, (Maunder and Punt, 2013). Integrated analysis, in the
orm of statistical catch-at-age modelling, was first developed in
he 1980s (Fournier and Archibald, 1982; Methot, 1989, 1990), and
s used to assess many species in the SESSF and elsewhere around
he world (e.g. ICES, 2006; PFMC, 2009; IATTC, 2011). Integrated
nalysis has become the preferred method for assessment in the
ESSF because, among other reasons, it can combine multiple types
f data, it does not require complete time-series of all data sources,
nd simulation testing reveals it to be a robust assessment method
or a variety of SESSF species (Punt et al., 2002; Klaer and Wayte,
011).

A key advantage of integrated analysis for fisheries stock
ssessment is that it can make full use of both age- and size-
pecific information. Factors important for describing population
ynamics, such as maturity, fecundity, natural mortality, and gear
electivity, may  variously be functions of age or size for the species
n question, and integrated analysis models can specifically reflect
his. As such, time-series data relating to both age and length, along
ith other data types, can be incorporated and accounted for in a

ingle, combined objective function when using integrated analy-
is. The integration of age- and size-specific information requires

 method to relate body size to age. This may  be an age–length
ey which describes the distribution of age for each length, or a
unctional relationship between age and length, combined with an
dditional function relating length to mass. When using age–length
elationships, it is common practice to account for individual vari-
tion in length-at-age by specifying or estimating a coefficient of
ariation around the mean relationship, but change over time in
ean length-at-age, or indeed any form of temporal variability in

rowth, is rarely considered.
Assessments based on integrated analysis for the SESSF are now

egularly implemented using Stock Synthesis (SS), a statistical-
atch-at-age stock assessment modelling platform that can adapt
o a wide range of assessment situations (Methot and Wetzel,
013). The use of SS in implementing stock assessment models
ffers the advantage of allowing parameters that can vary through
ime, including annual and/or cohort specific variability in growth
Methot and Wetzel, 2013). This study shows that cohort-specific
ariability in mean length-at-age is a predominant form of tem-
oral variability in growth for blue grenadier, and considers two
lternative stock assessment models: one assuming static growth
generally the status quo for stock assessments in the SESSF and
lsewhere), and an alternative model that estimates cohort-specific
eviations from the mean growth function. Using SS, each model is

ndependently applied to blue grenadier data, demonstrating key
tock assessment results can depend on assumptions made about
he nature of growth.

. Methods

.1. Data and initial analyses

Assessments for blue grenadier are based on catch data (by
eet, and including discarding rates), catch-rate data, length-
ased catch-composition data, age–length data (from otoliths
ub-sampled from length-measured fish), and fishery-independent
bundance indices from acoustic and egg-based surveys. Data from
he years 1979 to 2007 were used in this study. Prior to the
pplication of assessment models, observed age–length data were

nalysed to identify possible patterns of temporal variability in
ean length-at-age.
As well as enabling the estimation of growth parameters,

ge–length data can be used to estimate mean lengths-at-age for
search 142 (2013) 27– 36

a  population. Cohort related effects on growth can be discerned
directly by grouping length-at-age observations by cohort, and
making cohort-specific estimates of mean lengths-at-age. Year-by-
year effects on growth are more difficult to detect. Year-specific
effects on growth vary annual increases in the size of individ-
uals in a single year, and are likely to affect all individuals, across
all cohorts, in a population. These effects can be detected from
repeated measures of individual fish, or inferred by tracking the
‘growth increments’ of individual cohorts, and comparing the aver-
age sizes of consecutive ages over consecutive years.

Age–length data, available for years between 1984 and 2007,
were examined for temporal changes to mean length-at-age. Year-
specific growth increments were created by calculating differences
between average length-at-age values among consecutive years
and consecutive age classes. The resulting values were converted
to residuals by dividing each one by the average value of its spe-
cific age-increment. Cohort-specific length-at-age residuals were
created by dividing each length-at-age observation by the average
of the length observations for that age. Subsequent Q–Q plots of
both sets of residuals indicated they were positively skewed, and
close to log-normally distributed. As such, residuals were plotted
against their corresponding year or cohort in the form of boxplots
to show the distribution of points around the y = 1 reference line
and thus any year- or cohort-specific effects on growth.

2.2. Overview of the assessment method

The first step in the development of a stock assessment using
SS is the specification of a population dynamics model appropriate
for the species being assessed. This involves assumptions about the
nature of the stock dynamics. Where possible, these assumptions
are based upon relevant studies of the biology of the species in
question, or failing that, upon studies of similar species. For exam-
ple, the blue grenadier assessment includes an assumption that
the relationship between spawning biomass and recruitment can
be described by a Beverton–Holt stock–recruitment function with
a ‘steepness’ parameter value of 0.9, based on studies of similar
species in New Zealand (Punt et al., 1994). The next step is to specify
details for the implementation of an observation model, based on
the type and quantity of data available for the stock. Key structural
specifications for the blue grenadier assessment models examined
here are outlined in Table 1. Full details of the most recent stock
assessment are given in Tuck et al. (2012) and are not reproduced
here as the focus of this work is on the implications of assumptions
regarding growth. For a user manual and technical description of
the full range of model options available as part of the SS package,
see the NOAA Fisheries Toolbox website (http://nft.nefsc.noaa.gov)
and (Methot and Wetzel, 2013). All models presented here were
implemented in SS Version 3.2.

2.3. Model estimation of growth

Length composition data are randomly sampled from the fish-
ery catch. A random sample of these length data are selected for
ageing, and the observed age–length composition is converted to
a ‘conditional age-at-length’ composition matrix, giving the pro-
portion of catch during year y in length-class l that is of age a.
These data enable the estimation of growth parameters within
the assessment model and form part of an estimation procedure
that accounts for the effects of size-selective fishing gears. Using
the estimated growth parameters, expected mean length-at-age
vectors are determined and combined with a known mass–length

relationship to calculate expected mass-at-age. Incorporation of
ageing error is made by specifying the expected standard deviation
of age estimates for each age (based on estimates of multiple read-
ers for a sub-sample of aged fish). Formal details on the specification

http://nft.nefsc.noaa.gov/
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Table  1
Key structural specifications for blue grenadier assessment models (SG and CDG). Additional growth related specifications are outlined in Section 2.

Structural component Specification Estimated/fixed

Fishery structure Spawning and non-spawning sub-fisheries –
Natural mortality Age-independent, sex-specific Fixed
Maturity Logistic function of length Fixed
Sex  structure Two sex (male and female) –
Selectivity Spawning: logistic function of length Estimated

Non-spawning: dome-shaped function of length Estimated
Survey: logistic function of length Estimated

Initial state Unfished equilibrium age-structure (1960) Estimated
Stock–recruitment relationship

Functional form Beverton–Holt (steepness = 0.9) Fixed
Variation in recruitment Log-normal (recruitment variation, �R = 1) –
Years recruitment deviations estimated 1961–2004 –

1977–
0.2 
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Years cohort deviations estimated
Target standard deviation of growth deviation estimates 

f errors associated with mean length-at-age observations, and
he contributions to the objective function related to fitting to the
ge–length and length data components can be found in Methot
nd Wetzel (2013).

Two alternative assumptions are considered about the nature of
rowth through time for blue grenadier: first, that the length-at-
ge relationship remains static, and second, that the length-at-age
elationship is cohort-specific, such that it can change depending
n cohort year. Each of these alternative assumptions requires a
tructurally different stock assessment model with regard to the
stimation of growth parameters.

.4. Static growth

The ‘static growth’ (SG) model incorporates the assumption that
ean length-at-age is always equal to the value predicted by a

ime-invariant age–length relationship. Parameters for a gender
pecific age–length relationship are estimated within the assess-
ent model using a special parameterization of the von Bertalanffy

rowth equation. Mean length-at-age is calculated from growth
arameters at the beginning of the model start year, and then
rogressed forward through time according to constant growth
arameters. As such, mean length-at-age in the initial population

s calculated from:

0,�,a = L∞,� + (L1,� − L∞,� )e−k� (a−a3), (1)

here L0,� ,a is the mean length in the beginning of the model start
ear at age a for gender � , L1 is the mean length for gender � at age a3
a specified reference age near the youngest age well-represented
n the data), k is the von Bertalanffy growth coefficient, and L∞,� is
he mean asymptotic length for gender � . The notation presented
ere is intended to be consistent with the full SS model description
see Methot and Wetzel, 2013). As such, the notation for parameters
3 and a4 is retained despite no reference to parameters a1 and
2 (used for specification of age specific natural mortality) in this
aper.

When the oldest age well-represented in the data is close or
qual to the maximum age, L∞ is estimated directly. Otherwise, L∞
s calculated from:

∞,� = L1,� + L2,� − L1,�

1 − e−k� (a4−a3)
, (2)

here L2,� is the mean length at age a4, a specified reference age
ear the oldest age well-represented in the data. Mean length is

ncremented across model time-steps (years) as:
y+1,�,a+1 = Ly,�,a + (Ly,�,a − L∞,� )(e−k� − 1),  (3)

here Ly,� ,a is the mean length at the beginning of year y at age a
or gender � . The coefficient of variation in length changes linearly
2004 –
Fixed

with length at age between parameters specified for ages a3 and
a4 for gender � . The standard deviation of length-at-age for each
gender � is given by:

��,a =

⎧⎪⎪⎨
⎪⎪⎩

L̃�,a

L̃�,aCV1,�(
CV1,� + (L�,a − L1,� )

(L2,� − L1,� )
(CV2,� − CV1,� )

)

L̃�,aCV2,�

for a ≤ a3,

for a3 < a < a4,

for  a ≥ a4,

(4)

where �� ,a is the standard deviation of length at age a for gender
� , CV1,� is the coefficient of variation for length at age a3 for each
gender � , CV2,� is the coefficient of variation for length at age a4 for
gender � and CV2 ≥ CV1. The standard deviation of length at age, �a

controls the variation around predicted length-at-age which is fit
to the observed age-length and length composition data.

Mean mass-at-age is determined by converting mean length-at-
age from the age–length relationship to mean mass based on the
length–mass relationship:

w�,a = ˛Lˇ
�,a, (5)

where w� ,a is the mean mass for gender � at age a, and  ̨ and  ̌ are
estimated parameters, obtained by regressing the mass of individ-
ual sampled fish on their measured lengths. For SESSF species, the
length–mass relationship is assumed to be constant through time,
because the data required to estimate it are not collected annually.

2.5. Cohort-specific time-varying growth

The ‘cohort dynamic growth’ (CDG) model describes a popula-
tion in which fish of particular cohorts may  be smaller or larger at
age (have slower or faster growth) than would be expected from a
static mean length-at-age relationship. The CDG model differs from
the SG model by the addition of an extra set of parameters to the
von Bertalanffy growth equation described above. A cohort specific
growth deviation parameter, �, is estimated within the model for
each cohort in a specified range. The exponential of this parameter,
e�, is applied as a scalar multiplier to the calculated increments in
mean length across time steps (between ages). Thus, for cohort c,
mean length is incremented across model time steps (years) as:

L�,a+1,c = L�,a,c + (L�,a,c − L∞,� )(e−k� − 1)(e�c ), (6)

where L� ,a,c is the mean length for gender � at age a for cohort c,
and e� is the scalar multiplier applied to cohort c.

2.6. Application of the models
The SG and CDG assessment models were used to assess blue
grenadier stocks based on the data available up until 2007. These
models were identical except that (a) �c = 0 for all c for model SG
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Fig. 1. (a) Year-specific annual growth increment residuals for blue grenadier. Box-
plots  show distributions of ratios of yearly observed growth increments compared
to  their group means. (b) Cohort-specific length-at-age residuals for blue grenadier.
0 A.R. Whitten et al. / Fisher

hile some of the �c are estimated for the CDG model, and (b)
he CDG model also includes a normal penalty on the fluctuations
f the �c, i.e.,  (1/2�2

v )
∑

cv
2
c where the value for �c was set semi-

rbitrarily to 0.5. Age-length data were available for a wide range
f ages, including age-1, so the parameter a3 was set to 1. Ideally,
he �c parameters should be treated as random effects. However,
ithin the errors-in-variables estimation framework that underlies

S, it is necessary to select a set of cohorts for which to estimate
c (with the remaining �c values set to 0). This is similar to how
eviations about the stock-recruitment relationship are treated for
ost stock assessments that use SS. Selection of the set of cohorts

or which to estimate �c was achieved by first estimating �c for all
ohorts between 1961 and 2007 and identifying those cohorts for
hich the standard error of the parameter estimate was  low rela-

ive to the prior standard deviation of 0.5. A rough rule of thumb
as that cohorts for which the standard error of �c was <0.2 would

e estimated in the final model runs, with the remaining �c set to
. Consequently, values for �c were estimated for the 1977 to 2004
ohorts (inclusive).

. Results and discussion

.1. Initial analyses

Both cohort- and year-specific effects were evident from plots to
xamine temporal variability in growth (Fig. 1). Year-to-year vari-
bility in annual growth increments appear random with respect
o time (Fig. 1a), with little evidence of long term increases or
eclines in yearly average growth. There are however several indi-
idual years in which substantial proportions of calculated growth
ncrement residuals sit to one side of the y = 1 reference line. Many
f these ‘strong effects’, however, correspond to years with small
umbers of calculated residuals. Variability in mean lengths-at-
ge between cohorts (Fig. 1b) appears prominent, with boxplot
edian markers falling in many cases above or below the y = 1

eference line. In particular, data from the 1991–92 and 2003–04
ohorts indicate they are fast growing cohorts, each with very large
umbers of observations, and the majority of those observations,
itting above the reference line. Following the same reasoning,
ut in reverse, data from the 1993–94 cohorts indicate they are
low growing cohorts. Unlike year-specific effects, cohort-specific
ffects show a distinct pattern of auto-correlation. For the 1984–92
ohorts, growth appears to steadily increase, before dropping to a
low growth rate for the 1993 cohort, and then steadily increas-
ng, on average, through until the 2004 cohort. Such a pattern
ould indicate the effects of density-dependent processes acting
n growth, especially given the variable nature of cohort-strength
or blue grenadier, but could also arise as a consequence of age-
ng error. Additionally, the calculated residuals provide far greater
nformation about cohort-specific growth effects than they do for
ear-specific effects. This is because cohort effects can be deter-
ined directly from mean length-at-age observations, whereas

ear-specific effects require data pertaining to ‘growth increments’.
n this analysis, yearly growth increments were inferred from the
ifferences between average length-at-age values among consec-
tive years and consecutive age classes. These calculations are

ndicative of year-to-year changes in growth rates but due to the
equirement for data from consecutive years and age classes, there
re very few observations on which to base confident assertions
egarding year-by-year variation.

The degree to which variability in growth will affect the results

f a stock assessment cannot be determined a priori, and will
epend on the specific details and formulation of the assessment
odels. We  can infer from these plot diagnostics that cohort-

pecific growth is a predominant feature of the blue grenadier
Boxplots show distributions of ratios of individual length-at-age observations com-
pared to their group means. Numbers inside the plots represent the number of
residual calculations per individual boxplot.

stock, as indicated by the age–length observations. As such, for
the purposes of this study, we  investigated the effects of mod-
elling cohort-specific variability in growth, with the knowledge and
intention of excluding specific year-by-year effects that could be
explored in further analyses.

3.2. Outputs of the alternative models

Both the SG and CDG assessment models were able to converge
to a solution when applied to the data available for blue grenadier.
Though the models produced qualitatively similar results, there
were marked differences between estimates of population level
quantities in some years.

The CDG model mimics the observed data well by estimating the
1992 and 2004 cohorts to be the fastest growing cohorts (with mul-
tipliers of 1.37 and 1.42 respectively) and by estimating the 1994
cohort to be a markedly slow growing cohort, with a multiplier of
0.58 (Fig. 2). The 1991, 1993 and 1999 cohorts were estimated to be
growing at least 10 percent faster than average and the 1984, 1987

and 1995–1997 cohorts were estimated to be growing at least 10
percent slower.

Variability in observed mean length-at-age through time is
ignored by the SG model (Fig. 3a) but is reflected in the CDG model
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ig. 2. Series of cohort growth deviation parameter estimates with standard devi-
tions, as estimated by the Cohort Dynamic Growth model for blue grenadier.

y year-specific expected length-at-age vectors. The length-at-age
ector for the model end-year (2007) (Fig. 3b) shows the increase
n expected size of 3 year old fish (from the fast growing 2004
ohort) and the striking decrease in expected size of 13 year old
sh (from the slow growing 1994 cohort). The effect of accounting

or faster or slower growing cohorts is clearly visible when yearly
xpected length-at-age vectors are viewed in series (Fig. 4). Here,
ohort growth deviations are seen to propagate through time and
roduce characteristic dips and ridges in the surface plot. The
ffect of the estimated slow growing 1994 cohort for example is
isible as a large dip, first seen with the estimated size of 1 year
ld fish in 1995 and continuing through until the model end-year.

The better fit of the CDG model to age–length observations
or cohorts 1990–98 is shown in Fig. 5. The CDG model fits the
bserved data well, being particularly good at describing the
xpected mean length-at-age of the 1990, 1991 and 1995–1998
ohorts. However, the 1992 cohort appears to have fast growing
oung individuals that reach a reduced average maximum length
ompared to other cohorts, an effect that cannot be accounted for
y the growth parameters estimated in the CDG model, and the

bserved age–length data of the 1993 and 1994 cohorts are not fit
articularly well.

The integrated analysis model takes the effects of selectivity
nd ageing error into account when estimating expected mean

ig. 3. Expected mean length-at-age of blue grenadier (solid lines) with 95 percent credi
ohort  Dynamic Growth model (for 2007, the model end-year). Females are shown in bla
Fig. 4. Surface showing time series of expected mean length-at-age by year for
female blue grenadier, estimated by the Cohort Dynamic Growth model.

lengths-at-age. As such, the large amount of ageing error associated
with the age–length data of the 1993 cohort results in a cohort-
specific growth deviation estimate that could be close to the true
growth trajectory, even though it does not match with observa-
tions. This is one advantage of estimating growth parameters as
part of an integrated analysis. In contrast, the growth deviation esti-
mate for the 1994 cohort should be made with high precision, and
match the observations, as there is ample accurate data associated
with this cohort. However, the CDG model appears to overestimate
the decrease in growth of the 1994 cohort, possibly due to correla-
tion of the growth estimates with fixed values for natural mortality
and steepness, or with the associated strong recruitment estimate
for the 1994 cohort.

These effects are shown further in a summary of the fit of
the CDG model to the age–length data (Fig. 6). Median lines
of cohort-specific boxplots sit close to the y = 1 reference line,
indicating that all cohorts are fit reasonably well, but notably,

most of the median lines sit above the reference line. This fur-
ther demonstrates the effect of accounting for gear selectivity
on data collection and growth estimates. As there is unavoidable

bility intervals (dashed lines) estimated by (a) the Static Growth model and (b) the
ck, males are shown in gray.
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ig. 5. Cohort specific age–length observations with expected mean length-at-age
ines)  models for female blue grenadier. Estimates of length-at-age from the Static 
election of fast growing young fish during size-selective fishing,
he observed age–length data is expected to sit above the true
opulation growth trajectory, especially for young fish (Ricker,
969).

ig. 6. Cohort-specific length-at-age fit residuals for blue grenadier. Boxplots show
he  distribution of differences between individual age–length observations and cor-
esponding expected mean lengths-at-age by cohort, as estimated by the Cohort
ynamic Growth model.
estimated by the Cohort Dynamic Growth (solid lines) and Static Growth (dashed
h model are the same for all cohorts.

The SG model estimates a large recruitment in 1994 followed
by a peak in recruitment in 1995, but the CDG model estimates a
peak in recruitment in 1994 followed by a second large recruit-
ment in 1995 (Fig. 7). This effect is largely due to the differences
in length-at-age expectations of the different models. For exam-
ple, the large number of fish sampled in the 80 cm length-class in
2002 is expected to represent the seven year-old age class by the
SG model and contributes to the estimate of a large recruitment
in the year 1995. In the CDG model, the same fish are expected to
be part of the 8 year old age-class, and instead contribute to the
estimate of a large recruitment in the year 1994. There are further
marked differences between the two models towards the end of
the time series, when the SG model estimates much higher and
lower numbers of recruits than the CDG model in 2003 and 2004
respectively.

Another cause of differences in estimated recruitment strength
relates to the specification of selectivity. Selectivity is assumed
to be a time-invariant function of length for blue grenadier, and
selectivity-at-age is calculated from the expected mean lengths-
at-age, together with the standard deviations of length-at-age, in
any given year. Therefore, in the SG model, selectivity is a time-
invariant function of age, but in the CDG model, selectivity is a

function of both age and time. The SG model calculates the mean
length-at-age of the 2003 and 2004 cohorts based on the con-
stant mean length-at-age relationship, and because they are small,
expects they are only partially selected. The high abundance of
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Fig. 9. Female spawning depletion (ratio of current spawning biomass to unfished
equilibrium spawning biomass) trajectory for blue grenadier with 95 percent cred-
ig. 7. Time-series of age-0 recruits for blue grenadier, estimated by the Cohort
ynamic Growth model (solid black line) and the Static Growth model (dashed gray

ine).

mall fish caught in 2007 (the model end-year) is therefore almost
ntirely ascribed to a large recruitment of the more highly selected
003 cohort. In contrast, the CDG model estimates that the 2003
nd 2004 cohorts are fast growing, thus larger than expected by
he SG model, and more fully selected in 2007. Accordingly, the CDG

odel ascribes the high abundance of small fish caught in 2007 to
elatively high recruitment distributed across years 2003 and 2004.
he CDG model is also better able to account for large numbers of
iscarded fish in 1997 and 1998. The SG model expects fish from
he highly abundant 1994 cohort to be large and thus retained by
he fishery in those years. The CDG model however calculates that
sh from the 1994 cohort are slow growing and therefore more
orrectly expects those fish to be undersized and discarded in 1997
nd 1998.

For most of the 1980s the SG model estimates many thousands
f tonnes less spawning biomass than the CDG model (e.g. 40k

onnes c.f. 47k tonnes in 1984), but this pattern is reversed between
998 and the mid-2000s, when the SG model estimates many
housands of tonnes more spawning biomass than the CDG model

ig. 8. Female spawning biomass trajectory for blue grenadier, estimated by the
ohort Dynamic Growth model (solid black line) and the Static Growth model
dashed gray line).
ible  intervals, estimated by the Cohort Dynamic Growth model (solid and dashed
black lines) and the Static Growth model (dashed gray lines) in relation to relevant
management targets.

(e.g. 47k tonnes c.f. 39k tonnes in 1999) (see Fig. 8). This is another
effect of the different ways the SG and CDG models determine
length-at-age of the highly abundant 1994 and 1995 cohorts. Begin-
ning in approximately 1998, these highly abundant cohorts began
to dominate the spawning component of the population. The SG
model calculates mean length- and thus mean mass-at-age for
these cohorts to be much larger than does the CDG model, which
estimates them to be slow growing cohorts. As such, and because
maturity is modelled as a function of expected length, the estimated
spawning biomass is much greater for the SG model than the CDG
model for all years in which the highly abundant slow growing
cohorts dominate the population biomass.

The two  models also differ in the estimated time-trajectories
of female spawning depletion, BCurr/B0 (ratio of estimated current
to unfished equilibrium spawning biomass). For years 1998–2001,
the estimates of female spawning depletion from either model lie
outside the 95 percent confidence limits of the alternative model
(Fig. 9). As scientific advice regarding recommended catch levels
depends on estimates of current and future spawning depletion,
advice based on these alternative models could differ greatly. Based
on the results of the SG model and the relevant SESSF harvest con-
trol rule (Smith et al., 2008), the recommended annual catch limit
for blue grenadier would average 6200 tonnes for the 5 year period
following the model end-year. The same limit from the CDG  model
would be more than 10 percent higher at 7010 tonnes. Such differ-
ences between recommended catch limits arising from alternative
models would be even greater in years when median spawning
depletion estimates were outside 95 percent confidence limits. In
this study, those years correspond to periods when the population
is dominated by abundant and slow growing year classes.

The relative fit of the models to the data can be assessed by
comparing values of the negative of the logarithm of the likeli-
hood function. As this value is minimized in the fitting process,
a smaller value implies a better fit. The CDG model has greatly
reduced negative log-likelihood values compared to the SG model
for the discard, length composition, and conditional age-at-length
data components, indicating a vastly improved ability to fit to those

data (Table 2). A great improvement in overall model fit is evident
from a comparison of the total negative log-likelihood values: the
fit of the CDG model betters the SG model by over 400 points.
Though an improvement in fit is expected given the addition of
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Table  2
Comparison of the total value of, and contribution from each of the data sources to,
the  negative log-likelihood for each model. Lower values indicate a better fit to data.
“EP”  denotes the number of estimated parameters.

Data type SG model
(EP = 67)

CDG model
(EP = 95)

Survey 23.99 22.44
Discard 132.36 73.96
Length composition 915.29 668.47
Age-at-length 632.36 520.10
Recruitment 26.90 29.35
Parameter priors 1.71 1.47
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Parameter deviations 0.00 10.64

Total  1732.62 1326.43

xtra parameters, the very large improvement in total likelihood
ombined with a relatively small increase in the number of esti-
ated parameters (28 extra parameters for growth deviations in

he CDG model) indicates the CDG model is the better of the two  at
escribing the observed data and stock dynamics for blue grenadier.
odel selection can however be problematic for models of this type

s total likelihood calculations are made without methods to prop-
rly account for the true effect of parameter deviations. As such,
ypothesis testing and model choice must be approached with
aution.

.3. General discussion

These results demonstrate important outputs of stock assess-
ent models can be sensitive to structural assumptions made

bout growth. For the blue grenadier assessment, accounting for
ohort-specific variability in growth results in estimates of spawn-
ng biomass, recruitment, and relative spawning depletion that
iffer markedly from those of a ‘standard’ assessment that assumes

 static growth function.
Variability in mean length-at-age of blue grenadier has been

bserved for some time (Punt and Smith, 2001). To deal with this
ssue previously, mean length- and mean mass-at-age matrices
ave been estimated from year-specific age–length keys, length fre-
uency data and a mass–length relationship and specified directly

n integrated analysis style assessment models (Method 2 of Punt
nd Smith, 2001). Direct specification of empirical mass-at-age
atrices to capture variability in growth has also recently been

sed, for example, in North America for assessments of Pacific
ake (Stewart and Forrest, 2011). Although such methods explic-

tly account for variability in mean size-at-age through time, they
re not conceptually consistent with an integrated analysis esti-
ation procedure. This is because data used to construct mean

ength- and mean mass-at-age matrices are subject to sampling
rror, whereas integrated analysis methods assume such matri-
es are free from associated errors (Punt and Smith, 2001). Stock
ssessments implemented in SS overcome this issue by allowing
ength-at-age information to be treated as data, so year-specific
ength-at-age vectors, and associated errors, can be estimated
irectly within the assessment model. This method offers several
dvantages: it automates the process for interpolating values of
ength- and mass-at-age for years in which data are not available

hile taking the population dynamics into consideration; it allows
or estimation of between-individual variation in length-at-age;
nd it accounts for interactions between selectivity and estimation
f growth parameters; all of which are common problems rarely
ccounted for by empirical based procedures.
One advantage of empirical based methods is the ability to
ccount for multiple patterns of variation in mean size-at-age. For
xample, in the North American Pacific hake fishery (Stewart and
orrest, 2011), there have been dramatic declines in maximum size,
search 142 (2013) 27– 36

increases in growth rate, and both seasonal and cohort-specific
variation in mean length-at-age. In aggregate, these patterns can
be captured by the use of empirical mass-at-age matrices, but are
extremely difficult to account for with the use of parametric growth
models. Methods like those employed in this study might there-
fore be most suitable when the observed variability in size-at-age
is restricted to one particular form.

The cohort-specific variability in observed mean length-at-age
for blue grenadier, together with the improved fit to data provided
by the CDG model, indicates growth rates (especially those of young
fish) depend on cohort-specific factors. Such factors might include
food availability or water temperature during the first years of
growth, or density-dependent factors such as within- and between-
cohort competition for resources. The latter possibility is supported
by estimates of growth deviations and recruitment from the CDG
model. The fast growing cohorts of 1991–1993 and 1999 corre-
spond to years of very low recruitment and were each preceded
by several consecutive years of low recruitment. The slow grow-
ing cohorts of 1984, 1987, and 1994–1995 correspond to years of
high or very high recruitment, and the slow growing 1996 and
1997 cohorts were preceded by the highest levels of recruitment
recorded for the fishery. Growth rates of juvenile blue grenadier
therefore appear to be affected by the number and/or density of
fish in the same cohort and in cohorts that precede them, a form
of density-dependent growth. This suggests stock assessments of
other species that are likely to be affected by density-dependent
growth, such as those exhibiting highly variable recruitment, might
also benefit from these methods to estimate variation in mean
length-at-age. Density-dependence in growth can greatly affect
the predicted outcomes of stock responses to fishing (Rose et al.,
2001; Bardos et al., 2006), so a more thorough modelling approach
would relate growth to an indicator of density, such as recruit-
ment strength. This would be particularly useful for improving the
accuracy of projections and thus the predictive capability of mod-
els. For blue grenadier however, and likely for other species where
growth is affected by fluctuations in recruitment, the ability to pre-
dict changes in growth will be limited by the ability to predict future
levels of recruitment.

Estimates of growth parameters and growth parameter devi-
ations can be confounded by assumptions regarding other
parameters associated with productivity, such as steepness of the
stock recruitment curve and natural mortality. Values for both
steepness and natural mortality were assumed and fixed in the
models presented in this study, and could correlate strongly with
key growth parameters such as k and L∞. Although model outputs
did not indicate any strong dependence of growth parameters upon
other model parameters, simulation analyses like those performed
recently by Lee et al. (2011) to determine the reliability of estimates
for natural mortality in stock assessments could help to determine
whether estimates of temporal growth deviations are reliable and
robust. Additionally, these methods could be used to determine if
the CDG model can accurately differentiate between cohort- and
year-specific effects.

The ability of the CDG model to accurately estimate cohort
growth deviations is also limited by the quantity of age–length
data available for each cohort, and thus on the relative numbers of
fish available to the fishery from each cohort. Cohort growth devi-
ations are poorly estimated for years of low recruitment and for
recent cohorts yet to enter the fishery. Because weak year-classes
have little bearing on the calculation of population level quanti-
ties, precise estimation of their growth is not critical. However,
the estimation of growth parameters of recent cohorts is critical

for accurate estimation of population level quantities, and espe-
cially for forecasting population responses to fishing. The accuracy
and efficacy of the CDG model could therefore be improved by
additional fishery-independent sampling of young fish or, in the
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ase of the blue grenadier fishery, by length and age sampling of
ndersized discarded fish.

The need to determine a timeframe over which to estimate
eviations to growth parameters, and to pre-specify the standard
eviation of the distributional assumption, presents an interesting
ase for further study. There have been recent efforts to develop
nd scrutinize methods for estimating year-specific recruitment
ariability (Methot and Taylor, 2011) and the methods applied in
his study to estimate growth variability are similar in principle. We
ecommend similar research and development of methods for esti-
ating year- or cohort-specific growth deviations. Methods that

ully integrate over the penalized deviates or random effects in
he calculation of likelihood values would also be beneficial, and
ould improve model selection and hypothesis testing. Ultimately,
odels that allow for inter-annual or cohort-specific variability

n growth could become standard assessment techniques, as has
odelling variability in recruitment.
Another approach to dealing with variability in growth in stock

ssessments (or with variability in length-based fishing gear selec-
ivity) involves converting the observed length composition for
ach given year to the corresponding age composition (or vice
ersa), and estimating growth parameters outside of the model.
f growth (or selectivity) varies from one year to the next, then
nnual age–length keys can account for the variability (e.g. Punt
t al., 2001). We  chose to estimate changes to growth inside the
ssessment model to more fully align with an integrated analy-
is procedure, but the criticisms levelled here at the estimation
f growth outside the stock assessment model, could also be
ade for the estimation of maturity-at-length and other factors. In

he models studied here, maturity-at-length was necessarily pre-
pecified and fixed with respect to time, because the data required
o estimate the relationship, or temporal changes to it, are not
vailable for species from the SESSF. Because there could be tempo-
al changes to this relationship, and to other important measures
uch as mass-at-length, improved stock assessment models for blue
renadier could include the raw data used to determine these rela-
ionships, and thus allow for relevant parameters to be estimated
nside the models. Given the central hypothesis of, and evidence
or temporal variability to growth, data relating to mass-at-length
or blue grenadier should be collected more regularly in the future.

The aim of this study was to make comparisons between the
DG model and a more ‘standard approach’; we  achieved that
y implementing a model that follows the usual assumption of
tatic growth, and comparing it to another model that accounts
or cohort-specific variation in mean length-at-age. By implemen-
ing both alternatives with an integrated analysis procedure, and by
sing a standard stock assessment framework (SS), we can be sure
hat changes in model fit and subsequent model outputs are due
o the single change relating to estimation of variability in mean
engths-at-age. Further study should focus on comparing alterna-
ive methods for dealing with temporal variability in growth in
tock assessment models. This could include comparing the effi-
acy of models employing growth deviation parameters to those
hat use fixed estimates of annual mass-at-age. Simulation analy-
es could help to determine which methods work best and whether
ohort- or year-specific growth is occurring in a ‘real’ population.

.4. Conclusion

We recommend that sensitivity to alternative assumptions
bout growth be routinely examined for fisheries stock assess-
ents. Mean length-at-age might vary primarily between years,
ather than between cohorts, or gradual changes to mean length-
t-age or asymptotic size might occur over long periods. Patterns in
bserved age-length data should be examined and used to decide
hich methods are likely to suit the stock assessment at hand. The
search 142 (2013) 27– 36 35

use of SS for stock assessments facilitates this by providing many
options for modelling variation in expected size-at-age. SS permits
growth parameters to vary by year with year-specific deviations,
for series of years though the specification of time-blocks, by a
random walk process for a specified period, to trend from one set
of specified parameters to another over a defined period, through
functional linkage to environmental time-series data, and by the
direct input of annual mass-at-age data. Any combination of these
methods could be implemented for a stock if observed trends in
age–length data indicated it to be appropriate. In many cases how-
ever, mean length-at-age will be sufficiently uniform to satisfy the
assumptions of static growth, in which case simpler SG style models
(with fewer parameters) would be preferable.

This study demonstrates the benefits of testing stock assessment
models with alternative structural assumptions and of accounting
for variation in mean length-at-age where observations indicate
significant change through time. In this case, we identified that
the SESSF blue grenadier stock could be better modelled by the
inclusion of model parameters to describe cohort-specific variabil-
ity in growth. The explorations of alternative models showed how
changes to stock assessment model structure can result in signifi-
cant differences to key outputs, and at the same time, provide useful
insights into the nature and possible causes of variability in growth.
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