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Stock  Synthesis  (SS)  is a  likelihood-based  statistical  catch-at-age  modeling  environment  allowing  multi-
ple data  sources  to be  used  to characterize  population  dynamics  through  time.  While  it  is typically  applied
in data-rich  circumstances,  its  suitability  in data-limited  situations  is  investigated  in  this  work.  Two  “Sim-
ple Stock  Synthesis”  (SSS)  approaches  are  outlined,  each  developed  to mimic  the  Depletion-Based  Stock
Reduction  Analysis  (DB-SRA)  estimation  of overfishing  limits  (OFLs)  currently  applied  to  data-limited
U.S.  west  coast  groundfish  species.  SSS-MC  uses  Monte  Carlo  draws  of  natural  mortality,  steepness,  and
stock  depletion  and  estimates  initial  recruitment,  while  SSS-MCMC  estimates  natural  mortality,  steep-
ness, and initial  recruitment  while  fitting  to an  artificial  abundance  survey  representing  stock  depletion
with  an  error  distribution  equivalent  to the  stock  depletion  prior  used  in  DB-SRA.  These  approaches  are
applied  to 45  species  of  unassessed  groundfishes  in  the  Pacific  Fishery  Management  Council  Ground-
fish  Fishery  Management  Plan,  and  the OFL estimates  are  compared  to  corresponding  DB-SRA  estimates.
Despite  model  structure  and  parameter  specification  differences,  SSS  led to  results  comparable  to  DB-SRA
over a wide  range  of  species  and  life  histories.  SSS  models  with  sex-specific  life  history  parameters  and
growth  variability  are  also  presented  as examples  of  how  the  inherent  flexibility  of SS can  be  used to

account  for  more  uncertainty  in  derived  quantities.  SSS-MCMC,  while  exhibiting  statistically  undesirable
traits  due  to the  inclusion  of the  artificial  survey,  readily  includes  data-informed  abundance  surveys  into
an assessment  framework  consistent  with  more  complex,  data-informed  assessments.  Establishment
of  viable  data-limited  approaches  in  SS  is  a convenient  first steps  in  “building-up”  stock  assessments
towards  fuller  implementation  in  SS when  additional  data  become  available,  while  also  providing  a  way
to inform  management  in  data-limited  situations.
. Introduction

The long recognition that excessive removals of marine
esources can lead to undesirable consequences to populations and
cosystems has motivated many management systems worldwide
o examine ways to halt future resource deterioration (Smith et al.,
009; Worm et al., 2009; Villasante et al., 2011). For example, the
eauthorization of the U.S. Magnuson-Stevens Fishery Conserva-
ion and Management Act (MSA) mandates the immediate ending
f overfishing of all stocks within a fishery management plan (FMP),
hile continuing to maintain optimal catch. The MSA  requires

nnual catch limits (ACLs) for all FMP  species to obtain this bal-

nce of sustainable and economically viable removals. The National
arine Fisheries Service National Standard guidelines define ACLs

n relation to two other metrics—the overfishing level (OFL) and
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the acceptable biological catch (ABC)—wherein OFL ≥ ABC ≥ ACL.
The first step in this chain, the OFL, is defined as exploitation at
maximum sustainable yield (UMSY) of the current year’s exploitable
biomass (BEX) (OFL = UMSY × BEX). Exploitable biomass and UMSY
are typically derived from statistical catch-at-age models that
require information on catch histories, life history parameters,
abundance indices, and size- and/or age-compositions of catch.
When UMSY is not reliably estimable, proxies are used instead
(Ralston, 2002).

Continuing with the U.S. example, the Pacific Fishery Manage-
ment Council (PFMC) groundfish FMP  contains 90+ species of fish of
which only ∼1/3 have stock assessment-derived OFLs. The remain-
ing stocks have not been formally assessed because of insufficient
data or other resources. Given data and resource limitations are on-
going issues, alternative ways to fulfill the MSA  mandates of setting

catch limits for all FMP  species are needed.

Average catch has long been a suggested fall back to devis-
ing catch recommendations in the U.S. (Restrepo et al., 1998).
MacCall (2009) proposed an improvement to average catch

dx.doi.org/10.1016/j.fishres.2012.03.006
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:jason.cope@noaa.gov
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Depletion-Corrected Average Catch or DCAC) by introducing a
onte Carlo derived correction to average catch based on probabil-

ty distributions for current stock depletion levels, natural mortality
M), the ratio of the fishing mortality at MSY  (FMSY) to M,  and
he ratio of biomass at maximum sustainable yield (BMSY) to ini-
ial biomass (B0). DCAC returns a distribution for sustainable catch
hat could be used to derive an OFL. Dick and MacCall (2010, 2011)
uilt on the tenants of DCAC and developed the Depletion-Based
tock Reduction Analysis (DB-SRA), a method that uses the same
pproach as DCAC, but links it to a simple population dynamics
odel. This step allows production and biomass to be explicitly

onnected and leads to derived quantities (MSY, B0, and BMSY)
imilar to those from stock assessments, as well as an OFL distri-
ution. DB-SRA can be updated yearly with new catch information
nd offers insight into the probability of catch exceeding the OFL
hrough time. It currently serves as the primary method providing
FLs estimates for most unassessed U.S. west coast groundfishes.

In recognition that OFLs derived from differing data availabil-
ty and analytical approaches warrant different treatments when
sed for management decision making (Smith et al., 2009), three
ategories of species are distinguished by the PFMC: (A) Category
: species with OFLs calculated using only historical catch and

ife history information (“data-poor”); (B) Category 2: species with
FLs calculated with the addition of indices of abundance (“data-
oderate”); (C) Category 1: species with OFLs calculated using

raditional stock assessment approaches (“data-rich”; Ralston et al.,
011). OFLs derived from more data-limited situations are dis-
ounted to a greater extent when calculating ABCs (Ralston et al.,
011). There is thus a need to not only have the ability to derive OFLs

n data-limited situations, but to also graduate species towards
ore data-rich assessments at less discounted future catches

Smith et al., 2009). A common framework to achieve both goals
s desirable.

Stock Synthesis (SS; Methot and Wetzel, submitted for
ublication) is a likelihood-based statistical catch-at-age modeling
ackage allowing multiple data sources to be used to character-

ze population dynamics through time. It is used for most U.S.
est coast groundfish stock assessments. While it is typically

pplied when data such as indices of abundance and length- and/or
ge-compositions are available, its suitability in data-limited envi-
onments is the subject of this paper, which aims to demonstrate
ow SS can be applied in data-limited situations using the estab-

ished theoretical foundation of DB-SRA. The approach is referred to
s “simple” Stock Synthesis (SSS). Two variants of SSS are presented
nd compared to DB-SRA. The pros and cons of these variants are
resented, as well as the main differences between the assumptions
f SSS and DB-SRA. Examples are also provided to demonstrate
he flexibility of SSS to represent additional uncertainty related
o parameters and model specification (e.g., incorporating growth
ariability and sex-specific differences in life history), thus pro-
iding a consistent and generalized framework to inform resource
anagement.

. Methods

Dick and MacCall (2010) applied DB-SRA to calculate OFLs for
0 species in the groundfish FMP  (Table 1 ). OFLs are used here as
he primary metric to compare SSS and DB-SRA. DB-SRA assumes
emales and males have the same life history parameters (usually
sing female values; Table 1), so the same assumptions are initially
ade for SSS. The catch histories used by Dick and MacCall (2010)

re used in SSS, assuming one fleet with selectivity equal to the

aturity curve.
SSS is implemented in two ways: (1) using the same Monte

arlo approach as DB-SRA that requires drawing values for each
f the input parameter from probability distributions, calculating
ch 142 (2013) 3– 14

any derived quantities and repeating this many times to obtain
probability distributions for model outputs (SSS-MC); and (2) using
the DB-SRA distributions as prior distributions for the parameters
and a Markov chain Monte Carlo (MCMC) approach to calculate
posterior distributions for all model outputs (SSS-MCMC). All SSS
models use SS version 3.11c. Example SSS model files are provided
in Supplementary material.

2.1. Matching DB-SRA inputs

DB-SRA uses four parameter inputs: (1) Relative Stock Status
(�; equivalent to 1-stock depletion); (2) natural mortality (M); (3)
FMSY/M and (4) BMSY/B0. Each of these is assigned a distribution from
which the Monte Carlo draws are taken. In the SSS applications,
each is treated in the following manner:

2.1.1. Relative Stock Status (�)
This input represents the prior belief on the status of the stock

in the current year, measured as 1-stock depletion. In DB-SRA,
a beta distribution bounded at 0.01 and 0.99 is assumed, with a
mean � = 0.6 (thus, stock depletion = 0.4) and standard deviation
(SD) = 0.1. In SSS, stock depletion is treated as two “observed” sur-
vey value entries in the data file (Supplementary material: SSS File
3). The first entry value is 1, representing no stock depletion in the
modeled first year (before fishing); the second is the stock deple-
tion in the current year. The mean and standard deviation (SD) of
this second entry is determined differently for each SSS variant.

For SSS-MC, values for current stock depletion are determined
from the beta distribution for � used in DB-SRA and converted to
stock depletion via 1 − �.  Standard deviations for these “observed”
survey values are set to be extremely low (0.00001) so the esti-
mated current depletion matches the inputted survey value. For
SSS-MCMC, the beta distribution is not available when fitting sur-
vey data, so approximations of the DB-SRA beta distribution were
made using both lognormal (the most common error distribution
used when fitting abundance index data in SS) and normal distribu-
tions. An optimization routine based on 1,000,000 random draws
from each distribution is used to solve for the mean and SD values
for the lognormal and normal distributions that approximated the
DB-SRA beta distribution (Fig. 1). Both the lognormal and normal
error distributional assumptions were considered in the SSS-MCMC
comparisons to DB-SRA.

2.1.2. Natural mortality
SSS treats M the same as DB-SRA; a species-specific mean M

(Table 1) and lognormal standard deviation of 0.4 are used either
to form a distribution from which M values are drawn (SSS-MC), or
used to form a prior distribution when M is estimated (SSS-MCMC).

2.1.3. Productivity (FMSY/M and BMSY/B0)
Productivity in DB-SRA is specified in terms of the distributions

for FMSY/M and BMSY/B0. The closest analog to these in SS is steepness
(h), though growth parameters also contribute to the translation
of production to biomass. No direct mapping of the two  DB-SRA
production ratios to steepness or growth currently exists, so SSS is
not expected to match DB-SRA exactly.

Growth parameters for each species were assumed known
(Table 1; an assumption confronted in Section 2.6), while h was
assigned prior distributions. Bounds for h were set using a mini-
mum bound of 0.25 based on He et al. (2006),  and a maximum of
0.99 (values of h = 1 can sometimes lead to unstable model behav-
ior). For rockfishes and flatfishes, mean steepness values were taken

from priors formulated by Dorn (pers. comm.; Dorn, 2002; Table 1)
and Myers et al. (1999), respectively. Those prior distributions were
then converted into bounded beta distributions (Fig. 2). The elas-
mobranchs and roundfishes (N = 5; Table 1) did not have steepness
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Table 1
Life history parameter inputs. Females and males were assumed to have the same parameters when sex-specific data were not available. Length at maturity refers to female maturity.

Group Scientific
name

Common
name

Species
code

AMAX AMAT LMAX M Growth
parameters

Weight
(g)–length
(cm) rela-
tionship

Length (cm) at
maturity

Female Male Female Male L50% Slope

L1 L∞ k CVyoung CVold M L1 L∞ k CVyoung CVold a b a b

Rockfishes Sebastes
aurora

Aurora
rockfish

ARRA 75 5 0.058 5.91 36.90 0.06 0.10 0.10 0.058 15.04 33.60 0.09 0.10 0.10 2.44E−05 2.83 2.44E−05 2.83 26 −0.62

Rockfishes Sebastes
rufus

Bank
rockfish

BANK 73 13 0.08 16.26 45.60 0.09 0.10 0.10 0.08 14.73 40.30 0.13 0.10 0.10 7.80E−06 3.15 7.80E−06 3.15 34 −5.39

Rockfishes Sebastes
chrysome-
las

Black-and-
Yellow
rockfish

BYEL 30 4 0.157 6.88 25.20 0.22 0.10 0.10 0.157 6.71 24.70 0.24 0.10 0.10 1.38E−05 3.13 1.67E−05 3.07 15 −1.42

Rockfishes Sebastes
melanosto-
mus

Blackgill
rockfish (N)

BLGL N 87 20 0.04 11.22 55.39 0.04 0.10 0.10 0.04 9.92 46.71 0.06 0.10 0.10 1.22E−05 3.04 1.22E−05 3.04 34 −0.87

Rockfishes Sebastes
mystinus

Blue
rockfish
(CA)

BLUR SCB 41 6 0.1 11.85 40.02 0.15 0.10 0.10 0.1 10.64 32.94 0.20 0.10 0.10 2.55E−05 2.87 2.27E−05 2.89 26 −0.60

Rockfishes Sebastes
mystinus

Blue
rockfish
(WA  & OR)

BLUR ORWA 41 6 0.1 6.42 47.20 0.31 0.10 0.10 0.1 10.19 48.40 0.23 0.10 0.10 2.55E−05 2.87 2.27E−05 2.89 26 −0.60

Rockfishes Sebastes
paucispinis

Bocaccio
(N)

BCAC 37 3 0.15 26.00 67.75 0.22 0.10 0.10 0.15 26.00 58.91 0.26 0.10 0.10 7.36E−06 3.11 7.36E−06 3.11 40 −0.36

Rockfishes Sebastes
gilli

Bronzespotted
rockfish

BRNZ 89 15 0.037 38.80 63.60 0.04 0.10 0.10 0.037 38.80 63.60 0.04 0.10 0.10 1.77E−05 2.98 1.77E−05 2.98 35 −0.10

Rockfishes Sebastes
auriculatus

Brown
rockfish

BRWN 34 4 0.137 11.29 51.40 0.16 0.10 0.10 0.137 11.29 51.40 0.16 0.10 0.10 2.30E−06 2.95 2.80E−06 2.87 26 −2.29

Rockfishes Sebastes
nebulosus

China
rockfish

CHNA 79 5 0.055 5.32 37.30 0.19 0.10 0.10 0.055 7.79 37.50 0.19 0.10 0.10 1.07E−05 3.21 1.25E−05 3.15 27 −5.53

Rockfishes Sebastes
caurinus

Copper
rockfish

COPP 50 6 0.09 14.48 57.20 0.13 0.10 0.10 0.09 9.42 51.70 0.22 0.10 0.10 1.37E−04 3.10 2.02E−05 2.98 34 −1.33

Rockfishes Sebastes
levis

Cowcod (N) CWCD 55 11 0.055 11.06 85.80 0.06 0.27 0.64 0.055 11.06 85.80 0.06 0.27 0.64 1.01E−05 3.09 1.01E−05 3.09 43 −0.51

Rockfishes Sebastes
rubrivinctus

Flag
rockfish

FLAG 38 5 0.121 NA NA NA 0.10 0.10 0.121 NA NA NA 0.10 0.10 8.81E−06 3.20 5.32E−06 3.34 34 −4.09

Rockfishes Sebastes
carnatus

Gopher
rockfish (S.
CA)

GPHR SCB 30 4 0.2 6.95 34.10 0.25 0.10 0.10 0.2 7.22 32.90 0.28 0.10 0.10 1.97E−05 3.01 1.70E−05 3.03 17 −1.68

Rockfishes Sebastes
rastrelliger

Grass
rockfish

GRAS 23 4 0.209 16.05 51.30 0.11 0.10 0.10 0.209 16.05 51.30 0.11 0.10 0.10 3.21E−05 2.89 7.31E−05 2.66 24 −1.55

Rockfishes Sebastes
rosenblatti

Greenblotched
rockfish

GBLC 50 10 0.09 9.24 57.99 0.05 0.10 0.10 0.09 9.52 56.11 0.06 0.10 0.10 1.10E−05 3.11 1.10E−05 3.11 28 −2.69

Rockfishes Sebastes
chlorostic-
tus

Greenspotted
rockfish

GSPT 51 10 0.088 5.43 44.20 0.13 0.10 0.10 0.088 5.59 44.00 0.14 0.10 0.10 7.70E−06 3.21 5.50E−06 3.29 28 −0.59

Rockfishes Sebastes
umbrosus

Honeycomb
rockfish

HNYC 31 5 0.151 3.88 24.90 0.11 0.10 0.10 0.151 3.88 24.90 0.11 0.10 0.10 6.70E−06 3.32 6.70E−06 3.32 11 −1.41

Rockfishes Sebastes
atrovirens

Kelp
rockfish

KLPR 25 4 0.191 7.36 28.50 0.29 0.10 0.10 0.191 7.37 28.19 0.30 0.10 0.10 1.24E−05 3.09 1.45E−05 3.04 26 −3.61

Rockfishes Sebastes
macdonaldi

Mexican
rockfish

MXRF 22 3 0.219 NA NA NA 0.10 0.10 0.219 NA NA NA 0.10 0.10 4.46E−05 2.66 4.46E−05 2.66 NA NA

Rockfishes Sebastes
serranoides

Olive
rockfish

OLVE 30 5 0.157 19.22 51.90 0.18 0.10 0.10 0.157 18.66 53.90 0.17 0.10 0.10 1.11E−05 3.06 1.52E−05 2.96 35 −4.06

Rockfishes Sebastes eos Pink
rockfish

PNKR 66 9 0.067 NA NA NA 0.10 0.10 0.067 NA NA NA 0.10 0.10 1.86E−05 2.96 1.86E−05 2.96 NA NA
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Table 1 (Continued)

Group Scientific
name

Common
name

Species
code

AMAX AMAT LMAX M Growth
parameters

Weight
(g)–length
(cm) rela-
tionship

Length (cm) at
maturity

Female Male Female Male L50% Slope

L1 L∞ k CVyoung CVold M L1 L∞ k CVyoung CVold a b a b

Rockfishes Sebastes
maliger

Quillback
rockfish

QLBK 76 9 0.057 17.59 41.80 0.07 0.10 0.10 0.057 17.49 39.50 0.09 0.10 0.10 2.50E−06 2.92 3.40E−06 2.83 26 −8.20

Rockfishes Sebastes
babcocki

Redbanded
rockfish

RDBD 106 4 0.04 NA NA NA 0.10 0.10 0.04 NA NA NA 0.10 0.10 2.06E−05 2.94 2.06E−05 2.94 34 −1.33

Rockfishes Sebastes
proriger

Redstripe
rockfish

REDS 55 7 0.081 9.43 38.28 0.16 0.10 0.10 0.081 9.31 29.52 0.22 0.10 0.10 1.05E−05 3.07 9.80E−06 3.09 30 −0.69

Rockfishes Sebastes
helvomacu-
latus

Rosethorn
rockfish

RSTN 87 10 0.049 9.08 28.66 0.10 0.10 0.10 0.049 9.37 27.93 0.13 0.10 0.10 1.15E−05 3.21 5.50E−06 3.26 23 −4.13

Rockfishes Sebastes
rosaceus

Rosy
rockfish

ROSY 18 4 0.273 6.07 32.90 0.12 0.10 0.10 0.273 4.87 30.20 0.16 0.10 0.10 1.16E−05 3.11 1.34E−05 3.05 20 −2.17

Rockfishes Sebastes
aleutianus

Rougheye
rockfish

REYE 170 20 0.024 19.01 51.12 0.06 0.10 0.10 0.024 27.32 53.02 0.04 0.10 0.10 7.92E−06 3.18 9.45E−06 3.12 47 −0.34

Rockfishes Sebastes
zacentrus

Sharpchin
rockfish

SHRP 58 6 0.077 8.25 33.21 0.17 0.10 0.10 0.077 8.23 26.98 0.20 0.10 0.10 1.13E−05 3.07 1.13E−05 3.07 22 −5.01

Rockfishes Sebastes
borealis

Shortraker
rockfish

SRKR  157 22 0.026 10.95 84.60 0.03 0.10 0.10 0.026 10.95 84.60 0.03 0.10 0.10 9.80E−06 3.13 9.80E−06 3.13 21 −0.75

Rockfishes Sebastes
brevispinis

Silvergray
rockfish

SLGR 82 9 0.053 7.54 61.38 0.06 0.10 0.10 0.053 34.43 56.46 0.07 0.10 0.10 7.20E−06 3.09 7.20E−06 3.09 46 −0.47

Rockfishes Sebastes
ovalis

Speckled
rockfish

SPKL 37 4 0.125 12.85 49.99 0.05 0.10 0.10 0.125 17.60 35.86 0.06 0.10 0.10 8.40E−06 3.14 5.20E−06 3.22 25 −2.30

Rockfishes Sebastes
hopkinsi

Squarespot
rockfish

SQRS 19 5 0.257 13.73 25.25 0.18 0.10 0.10 0.257 12.19 24.71 0.06 0.10 0.10 1.46E−05 2.96 1.46E−05 2.96 18 −5.37

Rockfishes Sebastes
constellatus

Starry
rockfish

STAR  32 7 0.146 13.91 45.00 0.09 0.10 0.10 0.146 6.47 38.06 0.09 0.10 0.10 1.52E−05 3.01 3.70E−06 3.37 27 −2.30

Rockfishes Sebastes
saxicola

Stripetail
rockfish

STRK 38 4 0.121 9.47 33.05 0.06 0.10 0.10 0.121 10.37 17.38 0.19 0.10 0.10 2.48E−05 2.80 3.79E−05 2.62 17 −2.30

Rockfishes Sebastes
ensifer

Swordspine
rockfish

SWSP 43  3 0.106 4.37 17.60 0.14 0.10 0.10 0.106 4.37 17.60 0.14 0.10 0.10 8.06E−05 3.26 8.06E−05 3.26 8 −2.10

Rockfishes Sebastes
nigrocinc-
tus

Tiger
rockfish

TIGR 116 16 0.036 NA NA NA 0.10 0.10 0.036 NA NA NA 0.10 0.10 1.13E−05 3.15 1.13E−05 3.15 NA NA

Rockfishes Sebastes
serriceps

Treefish TREE 25 5 0.191 12.15 30.64 0.23 0.10 0.10 0.191 12.15 30.64 0.23 0.10 0.10 1.52E−05 3.08 1.42E−05 3.08 21 −8.02

Rockfishes Sebastes
miniatus

Vermillion
rockfish

VRML  60 5 0.074 16.50 62.40 0.14 0.10 0.10 0.074 12.51 57.50 0.20 0.10 0.10 1.93E−05 2.99 1.90E−05 2.99 38 −0.50

Rockfishes Sebastes
reedi

Yellowmouth
rockfish

YMTH 99 6 0.043 25.21 46.36 0.25 0.10 0.10 0.043 16.65 45.18 0.22 0.10 0.10 1.87E−05 2.97 1.87E−05 2.97 39 −0.68

Rockfishes Sebastes
flavidus

Yellowtail
rockfish  (S)

YTRK 64 10 0.11 13.44 52.21 0.17 0.10 0.10 0.11 19.04 47.57 0.19 0.10 0.10 3.59E−05 2.75 2.87E−05 2.82 37 −0.47

Flatfishes  Citharichthys
sordidus

Pacific
sanddab

PDAB 11 2 0.465 9.50 30.91 0.31 0.10 0.10 0.465 9.50 25.98 0.46 0.10 0.10 6.29E−08 3.18 6.33E−08 3.17 19 −1.84

Flatfishes  Glyptocephalus
zachirus

Rex sole REX 24 5 0.2 13.45 41.82 0.39 0.10 0.10 0.2 13.45 41.82 0.39 0.10 0.10 2.75E−06 3.24 2.75E−06 3.23 35 −0.04

Flatfishes  Lepidopsetta
bilineata

Rock sole RSOL 22 5 0.219 20.65 51.60 0.15 0.10 0.10 0.219 19.54 40.20 0.26 0.10 0.10 1.15E−08 3.41 8.79E−08 3.06 30 −0.92
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priors available, so a diffuse (standard deviation = 0.05) symmetric
beta prior with bounds at 0.25 and 0.99 was used (Fig. 2).

2.2. Additional SSS set-up

In addition to the above parameters, SSS requires weight–length
relationships as well as dimensioning of the length and age bins.
Length bins were chosen as 2 cm bins up to the maximum reported
size, while age bins were defined in one year steps up to 90% of the
maximum age (Table 1; Supplementary material: SSS File 3).

2.3. Parameter estimation and model convergence in SSS

Only one parameter, the log of initial recruitment (ln R0), is esti-
mated in SSS-MC, while ln R0, M,  and h are estimated in SSS-MCMC.
In addition, the catchability coefficient (q) for the stock depletion
index is derived analytically when stock depletion is lognormal, but
estimated when stock depletion is normal.

Maximum likelihood estimation (MLE) is used to obtain the
parameter estimates in SSS-MC. When SSS-MC did not converge
(i.e. the difference between observed and model-predicted val-
ues of the current year index value was  >0.01), the non-converged
parameter estimates were used as the starting values for a subse-
quent model run. This approach was  repeated until the convergence
criterion was met. 1000 Monte Carlo draws were used for SSS-MC
to define the probability distributions.

SSS-MCMC uses MCMC  to explore parameter space and develop
posterior distributions for model outputs. A MCMC  chain of
2,200,000 cycles is run for each species, with the covariance matrix
rescaled during the first 200,000 iterations to achieve a desirable
acceptance rate, after which every 2000th parameter vector is
retained. Additional rejection of MCMC  draws occurs when esti-
mated current depletion is higher than the 0.999 quantile of the
prior distribution for current depletion. This rejection results in
fewer than 1000 retained draws for some species, but is consistent
with DB-SRA results that do not explore such large population sizes.

2.4. Contrasting SSS approaches

In summary, the main differences between SSS-MC and SSS-
MCMC  are: (1) M and h are drawn from prior distributions in SSS-
MC  and not updated, while in SSS-MCMC, M and h are assigned
priors that could be updated; and (2) the survey index is fit without
error in SSS-MC and with error in SSS-MCMC.

2.5. Differences between SSS and DB-SRA

There are a few notable differences between the population
dynamics models used in DB-SRA and SSS. The underlying pop-
ulation dynamics model in SSS is fully age-structured whereas
DB-SRA uses a delay-difference model. Therefore, unlike DB-
SRA, age and growth estimates are needed in SSS to define age
structure and remove catch according to age-/size-based selec-
tivity patterns. Age and growth information was not available
for 5 of the 50 species with DB-SRA results; those species were
excluded from the subsequent SSS applications (Table 1). Regard-
ing productivity, SSS uses a Beverton–Holt stock–recruitment
relationship (BHSRR) that assumes BMSY/B0 ≤ 0.5. DB-SRA uses
a Schaefer–Pella–Tomlinson–Fletcher (SPTF) hybrid model that
allows BMSY/B0 ≥ 0.5. This difference in formulations is unlikely to
be consequential for the examples of this paper because most of
the assumed distributions for BMSY/B0 in DB-SRA are less than 0.5

(Dick and MacCall, 2010, 2011), and thus behave more like a BHSRR.
Finally, the order of operation differs between SSS and DB-SRA.
In SSS, recruits are added, followed by catch removal; in DB-SRA,
catch is first removed, then recruits are added. The impact of these
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Fig. 1. Best fit approximations to the bounded beta distribution on � (1-stock depletion)
the  best-fit mean (�) and standard deviations (�) are given in parentheses. Lighter gray b
bars:  areas of overlap; broken vertical line: � = 0.6.
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ter used in SSS. The symmetric beta prior was  used for species in the elasmobranchs
nd roundfishes groups.

ssumptions has not been formally quantified, but is not antici-
ated to be great. Biomass (B) is measured as sex-combined mature
iomass for both SSS and DB-SRA.

.6. Sensitivity to life history and stock depletion assumptions

The influence on OFL estimates of using sex-specific life his-
ory values and including uncertainty in the von Bertalanffy growth
arameter k (assuming a coefficient of variation of 0.2) was  inves-
igated using SSS-MC for copper rockfish (Table 1). Copper rockfish
as chosen because it has been shown to be highly vulnerable

o overfishing (Cope et al., 2011), lacks a stock assessment, but
emonstrates variability in several life history parameters. The
ex-specific run of SSS-MC draws M for both females and males
nd includes male-specific values for growth and length–weight
arameters (Table 1).

The influence on OFL estimates of different assumptions about
ean stock depletion (20% and 60%) was also examined using cop-

er rockfish, as was the ABC value given two different probabilities
f overfishing (P*; Prager and Shertzer, 2010; Ralston et al., 2011):
* = 0.5 and P* = 0.4. A P* of 0.5 is equivalent to setting the ABC to the
edian of the probability density function for the OFL, whereas a P*

f 0.4 (currently the default P* value for category 3 (data-limited)
.S. west coast groundfishes; Ralston et al., 2011) is the OFL at a
umulative probability of 0.4.

.7. Comparing SSS and DB-SRA
OFLs are used to compare SSS variants and DB-SRA for the 45
pecies, both in terms of central tendency (the median) and vari-
nce (the median absolute deviation (MAD)). The MAD  was  chosen
o represent variance because it is comparable across scales and
 using either lognormal (left panel) or normal (right panel) distributions. Values for
ars: beta distribution; black bars c: lognormal or normal distribution; darker gray

is considered a more robust measure than the interquartile range
(Rousseeuw and Crouz, 1993). Although OFLs are the main metric
to compare SSS to DB-SRA, results for copper rockfish are used to
compare distributions for FMSY, BMSY/B0, M,  h, and stock depletion.

The 45 groundfishes are organized into three species groupings
(Table 1): (1) rockfishes (N = 36), (2) flatfishes (N = 4), (3) other fishes
elasmobranchs (N = 3) and roundfishes (N = 2). This structure allows
for similar steepness prior assumptions to be considered together
when reporting results.

3. Results

3.1. Error distribution for stock depletion in SSS-MCMC

The OFLs derived from the converged MLEs were insensitive to
whether a normal or lognormal error structure was selected for
stock depletion (Fig. 3, upper panel). However, the MCMC  results
were sensitive to this choice (Fig. 3, lower panels). Specifically,
SSS-MCMC using the normal error model exhibits the undesir-
able behavior that the prior distribution for M is not reflected in
its posterior. This occurs in SS because the normally distributed
survey error requires the estimation of an additional catchabil-
ity coefficient that demonstrated a high correlation (>0.9) with M,
constraining the space over which M varied, and leading to unreal-
istically low posterior variation in M (Fig. 3, lower left panel). Such
behavior makes the assumption of normal error for the stock deple-
tion index questionable. Assuming lognormal error (which does
not require estimating a catchability coefficient) shows improved
MCMC  behavior (Fig. 3, lower right panel) and forms the basis for
the remaining comparisons between DB-SRA and SSS-MC.

3.2. Comparing SSS and DB-SRA outputs

SSS-MC and SSS-MCMC led to OFL distributions with relatively
larger medians (Figs. 4 and 6) and even larger relative variances
(Figs. 5 and 6) than DB-SRA. The differences in medians partly
derived from how productivity are parameterized in SSS and DB-
SRA, as well as the inclusion of growth parameters in SSS, all
affecting the absolute scale of the biomass. Specifically, SSS used
group-specific h priors, rather than one productivity assumption
for all species, thereby accounting for the variability among groups.
The species groups with the lowest differences (elasmobranchs and
roundfishes) also had the lowest mean h values (∼0.6). Exploratory
model runs with rockfishes and flatfishes confirmed that lowering

the mean of the prior for h resulted in median OFLs more similar to
those from DB-SRA. In general, median OFL values from SSS-MCMC
tended to be higher than those from SSS-MC, though variances were
similar between the two methods (Figs. 4 and 5).
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Fig. 3. OFLs for 45 groundfish species from two variants of SSS-MCMC using either the normal or lognormal error distributions for stock depletion (upper panel; solid line is
the  1:1 line) and the resultant trace plots for M for copper rockfish (lower panels).

Fig. 4. Differences in median OFL estimates from SSS-MC (upper panel) and SSS-MCMC (lower panel) relative to those from DB-SRA for three species categories: rockfishes
(gray  bars), flatfishes (black bars), and elasmobranchs and roundfishes (white bars). X-axis labels are species codes found in Table 1. Horizontal broken line indicates a value
of  0.5.
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A more detailed look using copper rockfish demonstrates a
otable overlap in the distributions for OFL and FMSY between SSS
nd DB-SRA (Fig. 6), while also illustrating the larger medians and
atter tails (most notable for SSS-MCMC). The largest discrepancy
elates to the location of BMSY relative to B0. For example, while the

B-SRA-assumed median BMSY/B0 was 0.4 for rockfishes, the SSS
edian BMSY/B0 estimates for rockfishes ranged from 0.25 to 0.35.
One expectation of SSS is that the resulting probability distri-

utions should reflect the priors because there are no data. This

ig. 6. Distributions for the OFL, FMSY , and BMSY/B0 from SSS-MC (left panels; black bars) an
ars)  for copper rockfish. Dark gray bars are areas of overlap. Vertical lines indicate medi
upper panel) and SSS-MCMC (lower panel) relative to those from DB-SRA for three
oundfishes (white bars). X-axis labels are species codes found in Table 1. Horizontal

expectation is confirmed for SSS-MC (Fig. 7). However, the posterior
distributions for the three parameters from SSS-MCMC, particularly
stock depletion, do not match their priors. Further exploratory runs
using SSS-MCMC demonstrated that the posterior distributions for
stock depletion and h are sensitive to the assumed bounds for ln R0,

(1–31), an extremely wide range compared to values for ln R0 typi-
cally seen in groundfish assessments. This behavior deserves more
consideration (see Section 4), so all remaining sensitivity runs are
based on SSS-MC.

d SSS-MCMC (right panels; black bars) compared to those from DB-SRA (light gray
an values.
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.3. Life history and stock depletion sensitivity runs
Allowing for sex-specific parameters (e.g., M,  VBGF parameters,
ength–weight relationships) did not lead to appreciably different
stimates of OFL for copper rockfish, although the distribution for
FL was slightly wider (Fig. 8a). Uncertainty in the VBGF growth

ig. 8. Distribution of OFLs for copper rockfish from SSS-MC under three different life h
eight–length parameters; (b) variability in the female growth parameter k; (c) sex-spec
 steepness) for copper rockfish from SSS-MC (left panels; gray bars) and SSS-MCMC

coefficient k (assuming female life history parameters for both
sexes) had a greater impact than sex-specific parameters (Fig. 8b).

Combining sex-specific parameters and variability in k for both
sexes led to the greatest difference (Fig. 8c).

OFL distributions for copper rockfish were sensitive to the choice
of mean stock depletion (Fig. 9; Wetzel and Punt, 2011b). The

istory parameter assumptions: (a) sex-specific natural mortality, age, growth and
ific life history parameters and variability in sex-specific growth parameters k.
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Fig. 9. Distribution of OFLs for copper rockfish from SSS-MC under two  different mean stock depletion assumptions compared to the default assumption of 40% stock
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epletion (black bars): (1) 20% stock depletion (upper panel; light gray bars) and (2)
anel  compares the OFL distribution using the 40% stock depletion assumption wit
ars  are the OFL values at different P* values.

lended OFL distribution (combining results for multiple depletion
ssumptions) expectedly led to a larger median OFL with wider
ariance than when a prior with a mean of only 40% is assumed.
hese differences in median OFL (P* = 0.5) and variance resulted
n similar ABC values (P* = 0.4; Fig. 9, lower panel), a coinciden-
al outcome given the blended distribution has a larger median
nd variance, and thus by definition has to intersect the OFL val-
es of a distribution with a smaller median and tighter variance
omewhere.

. Discussion

Stock Synthesis has proven a flexible tool for many fisheries
anagement applications, ranging from generalized stock assess-
ent modeling (Methot and Taylor, 2011; Ralston et al., 2011;
ethot and Wetzel, submitted for publication), operating models

nd data generation (Lee et al., 2011; Methot and Taylor, 2011;
aunder, 2012), and as a framework for simulation testing (Cope

nd Punt, 2011; Piner et al., 2011; Wetzel and Punt, 2011a). This
ork adds to the list by demonstrating the suitability of SS to
erform catch estimation (e.g., overfishing limits) in data-limited
ituations. It can be argued that SS is so complicated (e.g., many
arameters and specification options) that it is inappropriate for
impler, less data-intensive, tasks. The counter argument is that
ecause of its flexibility, SS may  be a convenient first step in
building-up” stock assessments of data-limited species towards
uller implementation later. The idea follows that as fisheries infor-

ation (e.g., population index or composition data) is collected, it
an be directly incorporated into a SSS-type model until the model
esembles a traditional stock assessment. A common platform that
uilds up stepwise towards a full stock assessment, while also pro-

iding a way to treat the multitude of species that will remain
ata-limited for the foreseeable future, is consistent with the cur-
ent U.S. west coast groundfish management tiered system of stock
ssessment categories based on data availability and uncertainty
tock depletion (middle panel; light gray bars). Vertical bars are medians. The lower
blended OFL distribution using 20%, 40%, and 60% stock depletion outputs. Vertical

(Ralston et al., 2011). Both SSS approaches examined here (MC  and
MCMC  versions) show promise as these first steps.

SSS-MC is most similar to DB-SRA, which is already used in
west coast groundfish management. Dick and MacCall (2011) note
that the population model and stock–recruitment function cur-
rently implemented in DB-SRA can be replaced by other models.
SSS-MC thus takes the Monte Carlo structure on which DB-SRA is
based and applies it to the model structure of SS. Model param-
eterization therefore becomes an important consideration when
selecting between SSS or DB-SRA. Determining whether it is easier
to parameterize h (Dorn, 2002; Michielsens and McAllister, 2004)
and growth parameters in SSS or FMSY/M and BMSY/B0 in DB-SRA
should be made when selecting among these methods. Informative
priors on ln R0 could also replace the need for an artificial survey
representing stock depletion in SSS.

SSS-MC suffers from the same caveats and limitations as DB-
SRA, both of which are particularly sensitive to the assumed
distribution for stock depletion (Wetzel and Punt, 2011b). Out-
side of having true prior information on stock depletion, the
attempt to construct a blended OFL distribution across multiple
stock depletion assumptions is one way to capture this uncer-
tainty for management (simply increasing the uncertainty in the
stock depletion prior for the Monte Carlo draws would be another).
Other data-limited methods may offer ways to refine stock sta-
tus input assumptions (Cope and Punt, 2009), whereas Dick and
MacCall (2010) presented potential correction factors based on
productivity-susceptibility analysis vulnerability scores (Patrick
et al., 2010; Cope et al., 2011) that may  help reduce the bias in OFL
estimates even when the stock depletion assumption is incorrect.

SSS-MCMC applies the same prior structure as DB-SRA, but per-
petuates the parameter uncertainty when calculating OFLs in a

different way  that is most analogous to a typical stock assess-
ment conducted using SS. The inclusion of M and h as estimated
parameters, in addition to ln R0, allows any additional informa-
tion in the model to influence both maximum likelihood estimation
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nd MCMC  exploration. Unfortunately, the simultaneous fitting of
n artificial index of stock depletion with error and the prior on
n R0 effectively places two priors on ln R0, a discouraged practice
n Bayesian statistics and an example of what is known as the Borel
aradox (Brandon et al., 2007; Schweder and Hjort, 1996; Wolpert,
995). This effect likely partially explains the difference between
he stock depletion prior and posterior using SSS-MCMC. Unless a

ore-informed prior is specified for ln R0 and the artificial index
emoved, SSS-MCMC may  not be a tenable option under catch-
nly scenarios. However, it may  be the next step in building-up
ata-poor SSS models towards data-rich SS models. The inclusion
f a data-informed abundance index and elimination of the arti-
cial depletion index with error also removes the Borel paradox,
llowing parameter uncertainty to be characterized using MCMC
n a statistically proper way.

There are several advantages to estimating sustainable catch
sing SSS in data-limited situations. The flexible parameterization
f SS can readily allow for the inclusion of additional parame-
er uncertainty when calculating a distribution for the OFL. As
n example, this paper shows how easily sex-specific life history
arameters and uncertainty in growth parameters can be accom-
odated in SSS, and how this changes both the median OFL and

ncreases the width of the OFL distribution. Both the median and
idth of the OFL distribution are critical components in determin-

ng catch limits given a specified probability of overfishing (Ralston
t al., 2011). Incorporating these and other sources of uncertainty
ore fully informs managers. Additionally, alternative life history

atterns, such as hermaphroditism (Alonzo et al., 2008), and addi-
ional growth morphologies are amendable to modeling using the
S framework.

The SSS approach is one of many ways to guide management
ecisions when fisheries information is limited. Others examples

nclude catch-based multipliers (Berkson et al., 2011), length-based
eference points (Froese et al., 2008; Cope and Punt, 2009), defin-
ng trigger points based on trends in catch-per-unit-effort (Dowling
t al., 2008; Wilson et al., 2010; Little et al., 2011; Prince et al.,
011), catch-curve-derived decision rules (Wayte and Klaer, 2010),
nd sharing data from more informed species (Smith et al., 2009;
unt et al., 2011). Recent developments from around the world
f many of these methods highlight the increased need for such
ptions to inform management, while the variety reflects differ-
nt data availabilities, theoretical approaches (empirically derived
ersus model-based; Prince et al., 2011) and management system
eeds, underscoring the diversity of situations in which “data-

imited/poor” methods are relevant. Also salient in each of these
pproaches is the numerous ways “data-poor” can be interpreted.
roadly, one can define “data-poor” as any situation where infor-
ation limitations prohibit one from accomplishing a task (i.e.,

erforming traditional stock assessments; Smith et al., 2009). Real-
zing that “data-poor” methods form more of a toolbox rather
han one or even competing tools is an important conceptual
tep towards knowing the “when and why” of applying such
ethods.
The extensive use and development of SS has demonstrated

ts suitability to complicated, data-intensive situations. However,
ore commonly, fisheries scientists find themselves lacking the

ssential data needed to perform stock assessments, and thus are
hallenged to inform management. Despite the technically com-
licated and potentially unsettling capacity of SS to consume much
isparate data under a multitude of model specifications and out-
ut voluminous amounts of derived quantities, its structure is also
menable to simpler tasks. And while due caution should be applied

hen using any pre-coded modeling software (Martell and Ianelli,

ubmitted for publication), the ability to develop and build up
arameter information and data-fitting within a common frame-
ork is advantageous. The implementation of SSS offers a foothold
ch 142 (2013) 3– 14 13

in the path towards more fully realized stock assessments in SS,
while providing information to advise resource managers along the
way.
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