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Many  fisheries  stock  assessment  models  are  implemented  specifically  for likelihood-based  estimation  or
for  Bayesian  inference  (via  full integration  of the  joint  posterior  distributions),  but  not  all  have  appro-
priate  structure  for both  statistical  approaches.  Bias  correction  of recruitment  deviations,  in  particular,
must  be  adjusted  to  achieve  consistency  in  each  case.  Fisheries  management  often  uses  the  two  types  of
results similarly,  setting  future  catch  quotas  based  on  expected  values  or  posterior  medians  depending
on  which  is available  given  time  constraints.  Using  two  recent  examples  from  the  U.S.  west  coast,  Pacific
hake  and  sablefish,  both  implemented  in  Stock  Synthesis,  we  find  that  likelihood-based  estimates  of key
management  quantities,  such  as  spawning  biomass,  corresponded  well  with  posterior  modes,  but  tend
to be lower  (on  an  absolute  scale)  than  posterior  median  values  and  that  the  asymptotic  approximation
for  uncertainty  intervals  based  on  the Hessian  matrix  tends  to  overestimate  the  likelihood  of  smaller
stock  sizes  and  underestimate  that  of  larger  stock  sizes.  This  pattern  may  be  caused  by a basic  asymme-

try  in most  fisheries  data-sets:  the  necessity  of  a minimum  stock  size  to  have  generated  the  observed
catch/time-series,  but little  information  regarding  the  plausibility  among  much  larger  stock  sizes.  Where
only one  type  of  inference  is available,  this  asymmetry  may  be important  for  management  decision-
making.  Even  if  management  takes  explicit  account  of  uncertainty,  in  some  cases  adding  a precautionary
buffer  that  scales  with  the relative  uncertainty  in point  estimates,  the  differences  in  catch  advice  may
turn  out  to  be important  and  the  relative  reductions  non-linear.
. Introduction

Stock assessments serve to inform fisheries management
round the world. Specific stock assessment models and meth-
ds vary by region, data-availability, and management needs. The
urrent state-of-the-art method for stock assessment includes
ntegrated assessment models (Fournier and Archibald, 1982;

aunder, 2003; Methot and Wetzel, this issue; Maunder and
unt, this issue). These integrated models include a process
odel, which approximates relevant population dynamics, and

n observation model, which approximates sampling processes.
he process–model component may  incorporate ecological detail
ncluding age, length, location, and gender. Parameters in inte-
rated models are estimated by computing the deviance between

redicted and observed data. Data are predicted by using the
rocess model and parameters to calculate stock size and
ther population–dynamics variables, and the observation model

∗ Corresponding author. Tel.: +1 206 302 2447; fax: +1 206 860 6792.
E-mail address: Ian.Stewart@noaa.gov (I.J. Stewart).

165-7836/$ – see front matter. Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.fishres.2012.07.003
Published by Elsevier B.V.

calculates the data that would likely be observed given the param-
eters and resulting population dynamics. Sampling processes that
differ by age, length, location, or gender (e.g. fishery selectivity) are
generally included in the integrated assessment model when data
are available regarding age-, length-, spatial, or sex-composition.
Integrated models may  also incorporate information from previous
studies regarding difficult-to-estimate processes such as recruit-
ment compensation (Hilborn and Liermann, 1998) through priors
or likelihood penalties.

Many fisheries stock assessment models are implemented
specifically for likelihood-based estimation (frequently penalized
likelihood, including penalties as well as fit to observations; this
method is broadly referred to here as “MLE”; it is also sometimes
called “MPD-estimates”, and/or “delta-approximation based” in the
literature) or for Bayesian integration, but not all have appro-
priate structure for both modes of inference. Bias correction of
recruitment deviations (Methot and Taylor, 2011), implementa-

tion of prior probability distributions and/or likelihood equations
may  all need to be adjusted to achieve consistency in each case
(Methot, 2011). Within Stock Synthesis (SS; a generalized inte-
grated analysis platform programmed in AD Model Builder, ADMB;

dx.doi.org/10.1016/j.fishres.2012.07.003
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:Ian.Stewart@noaa.gov
dx.doi.org/10.1016/j.fishres.2012.07.003
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parameters and management related quantities. For Pacific hake,
the posterior distribution for the OFL was used by the PFMC for
setting future catch.1 For sablefish, the PMFC’s default method to
calculate a percent reduction from the MLE  was  used for setting
8 I.J. Stewart et al. / Fisheri

ournier et al., 2012; Methot and Wetzel, this issue), annual
ecruitment deviations from the stock–recruitment function are
ssumed to be generated from a log-normal distribution. Esti-
ates of recruitment must therefore be bias-adjusted to correct

he central tendency from the median to the mean, such that
he central-tendency of model estimates is consistent with the
ong-term projected central tendency given variable recruitments.
he degree of bias-correction required is a function of the vari-
bility in these deviations (�R, in SS), and the information in the
ata about recruitment. Typically the MLE  estimated variability of
ecruitments from early model years (prior to the period which is
ell-informed by the composition data) is low, and thus requires

 smaller adjustment (Methot and Taylor, 2011). However, the
ayesian posterior distribution for recruitments integrates over the

ull range of plausible values, and therefore requires a full bias-
orrection for all model years.

Uncertainty is increasingly important for interpretation of stock
ssessment results, and as a direct input to fisheries manage-
ent (Patterson et al., 2001). Likelihood-based estimates provide

he probability that repeating the experiment many times will
esult in a confidence interval that will contain the true parameter
alue with specific probability, not a specific probability statement
bout that parameter. Confidence intervals are commonly based on
symptotic theory, a normal error structure, and result in a sym-
etric distribution. Alternatively, Bayesian posteriors define the

robability distribution (nonparametric) for a parameter value, and
irect probabilistic statements can be made from that distribution.
he Bayesian interpretation of uncertainty is appealing when spe-
ific probabilities are of interest (Punt and Hilborn, 1997). Fisheries
anagement often treats these results similarly, despite the philo-

ophical differences inherent in the two types of inference (e.g.,
ilborn and Mangel, 1997; Carlin and Louis, 2000; Burnham and
nderson, 2002; Gelman et al., 2004).

The Pacific Fishery Management Council (PMFC), as mandated
y the Magnuson-Stevens Reauthorization Act of 2006, reduces the
arget fishery catch from the estimate of the overfishing level (OFL;

 level of harvest that if exceeded would constitute overfishing),
his reduction is a function of the degree of scientific uncer-
ainty around current stock estimates and a level of risk deemed
cceptable for that stock (Pacific Fishery Management Council;
ww.pcouncil.org). The scientific uncertainty is based on either:

1) the retrospective level of uncertainty in spawning biomass
SB) derived via meta-analysis of many recent stock assessments
Ralston et al., 2011), or (2) the degree of uncertainty estimated
rom the current stock assessment result (by whatever method is
vailable), whichever is larger. The use of the meta-analysis adjusts
ccordingly for cases where stock assessment uncertainty is under-
stimated; however, where greater uncertainty is estimated in the
ssessment it can still be included. This uncertainty is then used to
reate a probability distribution for the OFL, and the PMFC then
elects a “P*” (by law is <50%), which represents the estimated
robability that the specified catch will be in excess of the OFL.
hus, the probability distribution for the OFL, particularly the lower
uantiles, is very important in calculating the recommended catch
arget.

Due to the technical, time, and reporting constraints stock
ssessment analyses may  include either maximum likelihood,
ayesian, or both types of results. In the case of the PFMC,

uture catch targets have been based on both maximum likelihood
stimates, applying a reduction in catch calculated from the uncer-
ainty in log-SB (Ralston et al., 2011) or directly from the posterior

edians for the OFL depending on which were available. Using two

ecent examples from the U.S. west coast, Pacific hake (Stewart
t al., 2011a)  and sablefish (Stewart et al., 2011b), both of which
ere implemented in SS, we compare the maximum likelihood

stimates and Bayesian posterior distributions of key management
earch 142 (2013) 37– 46

quantities in an attempt to better understand how they differ and
to what degree catch advice may  vary depending on which method
is applied to generate catch targets.

The primary objective of this analysis is to determine whether
systematic differences occur in estimated quantities of man-
agement interest from integrated stock assessment based on
maximum likelihood and Bayesian inference, and to identify which
quantities are most susceptible, and how the probability distribu-
tions for the underlying model parameters lead to these differences.
To illustrate the general difference between symmetric and asym-
metric uncertainty, a simple hypothetical example is provided.

2. Methods

2.1. Statistical example

For the purposes of illustration, we  compare two  statistical dis-
tributions, each with identical modes. The first is log-normally
distributed with median, m,  and standard deviation in log space,
�2; the mode of this distribution is: m/e�2

. The second is nor-
mally distributed, with the variance approximated by the negative
inverse of the second derivative: m2�2/e2�2

. Although this simple
illustration is statistically unsurprising, it generally resembles the
distributions observed for actual stock assessment quantities inves-
tigated below. Of particular importance is the degree and pattern of
divergence in the percentiles of the lower tails, those values most
relevant to management decision making. The differences between
these distributions are presented for two  modal values.

2.2. Stock assessments

We  used the most recent stock assessments for sablefish and
Pacific hake incorporated into management by the PFMC (Stewart
et al., 2011a,b). Briefly, both are integrated stock assessments with
similar data sources (Table 1). Fishery-dependent data consists
of a time-series of catches assumed to be known without error
and biological sampling (individual weights, lengths and ages) of
those catches available for only a recent subset of years. Fishery-
independent (survey) data consists of one or more indices of
relative abundance covering a subset of recent years, as well as
biological sampling.

These assessment models use SS as a population dynamics
model that projects forward from initial conditions estimating
all model parameters simultaneously. Parameters for both stock
assessments include: initial age-structure deviations, recruitment
deviations about a stock–recruit function for each model year,
fishery and survey selectivity parameters, parameters describing
somatic growth, and others (Tables 2 and 3).

The two assessments provide an interesting contrast: Pacific
hake have a relatively short exploitation history and weak survey
information, while sablefish have a much longer exploitation his-
tory and somewhat more informative survey information. In both
cases, estimated uncertainty is large, due to relatively poor infor-
mation regarding the absolute scale of the populations.

We  first compare results from both types of inference for key
1 The Pacific Fishery Management Council ultimately based management advice
for  2011 on the model-averaged results from two  assessment models reported
together in Stewart et al., 2011a,b. For simplicity, in this paper we focus only on
the results of the Stock Synthesis model.

http://www.pcouncil.org/
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Table 1
Primary data sources for each stock assessment.

Data source Pacific hake Sablefish

Fishery-dependent
Fishery catch 1966–2010 1900–2010
Fishery biological 1975–2010 1978–1981, 1983, 1985–2010

Fishery-independent
Abundance indices 1995, 1998, 2001, 2003, 2005, 2007, 2009 1980, 1983, 1986, 1989, 1992, 1995, 1997–2010
Survey biological 1995, 1998, 2001, 2003, 2005, 2007, 2009 1980, 1983, 1986, 1989, 1992, 1995, 1997–2010

Table 2
Summary of assessment model parameters for sablefish.

Parameter Number estimated Bounds (low, high) Prior (mean, SD)

Stock, recruitment, and productivity
Ln(R0) 1 (8,12) Uniform
Steepness (h) – NA Fixed at 0.6
Recruitment SD (�r) – NA Iterated to 1.15
Initial  age deviations (ages 1–49 at age-0) 49 (−4,4) Normal (0,�r)
Time-series recruitment deviations (1900–2010) 111 (−4,4) Normal (0,�r)
Natural mortality (M,  female) 1 (0.01,0.11) Log(Normal) (−2.1791, 0.3384)
Natural mortality (M,  male) 1 (0.01,0.11) Log(Normal) (−2.0565,0.3375)

Survey catchability, selectivity and variability
Trawl surveys

Ln(catchability[Q]) 5 Variable Analytic solutions orLn(Q) uniform
Survey  selectivity (double-normal) 13 Variable Uniform
Extra  additive SD for survey index 4 (0.001,1.3) Uniform

Selectivity, retention, and discard mortality
Fishery selectivity (cubic spline) 28 Variable Uniform
Fishery retention (logistic) 7 Variable Uniform
Fishery discard mortality – NA Fixed at 20%, or 50% by fleet
Fishery size at first survival – NA Fixed at 28 cm

Individual growth and maturity
Females

Length-weight coefficient (a) – NA Fixed at 0.00000345
Length-weight coefficient (b) – NA Fixed at 3.267
Length  at 50% maturity – NA Fixed at 58 cm
Logistic slope of maturity – NA Fixed at −0.13
Length  at age 0.5 1 (22,30) Uniform
Length at age 30 1 (60,70) Uniform
von  Bertalanffy K 1 (0.15,0.35) Uniform
CV  of length at age 1 1 (0.03,0.15) Uniform
CV  of length at age 30 1 (0.03,0.15) Uniform

Males
Length-weight coefficient (a) – NA Fixed at 0.00000367
Length-weight coefficient (b) – NA Fixed at 3.251
Length  at age 1 offset to females – NA Fixed at 0.0
Length  at age 30 1 (50,60) Uniform
von  Bertalanffy K 1 (0.2,0.45) Uniform
CV  of length at age 0.5 1 NA Fixed at 0.0
CV  of length at age 30 1 (0.03,0.15) Uniform

Table 3
Summary of assessment model parameters for Pacific hake.

Parameter Number
estimated

Bounds (low, high) Prior (Mean, SD)

Stock, recruitment, and productivity
Ln(R0) 1 (13,18) Uniform
Steepness (h) 1 (0.2,1.0) ∼Beta(0.777,0.113)
Recruitment SD (�r) – NA 1.30
Initial  age deviations (ages 1–19 at age-0) 19 (−6, 6) ∼Ln(N(0, �r))
Time-series recruitment deviations (1966–2010) 46 (−4,4) Normal (0,�r)
Natural mortality (M)  1 (0.05,0.4) ∼Ln(N(0.2,0.1))

Survey  catchability, selectivity and variability
Acoustic survey

Ln(catchability[Q]) 1 NA Analytic solutions
Age-based selectivity (non-parametric; ages 3–5) 3 (−5,9) Uniform in scaled logistic space
Extra  additive SD for survey index 4 (0.001,1.0) Uniform

Selectivity, retention, and discard mortality
Age-based selectivity (non-parametric; ages 2–5) 4 (−5,9) Uniform in scaled logistic space

Individual growth and maturity
Empirically derived weight and maturity matrix by age and year.
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Fig. 1. Example lognormal (blue) and normal distributions (black). The standard
deviations in log space are held constant, but the central tendencies are smaller
(upper panel) or larger (lower panel). Shaded areas represent the lower 50% (light)
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Posterior distributions for the Pacific hake assessment were
integrated via a 10,000,000 iteration MCMC  chain, removing the
initial chain value, and saving every 5000th iteration, resulting
nd 10% (dark) of each distribution. Values less than zero are shaded on the left
f  the plot in light gray. (For interpretation of the references to color in this figure
egend, the reader is referred to the web  version of the article.)

uture catches2 (using a pre-specified log-SB sigma, 0.36; Ralston
t al., 2011). We  compare P*-based catch targets from MLE  esti-
ates with Bayesian posterior distributions for the OFL.
Standard convergence diagnostics were applied to Bayesian

esults. These included running preliminary pilot Markov-Chain
onte-Carlo (MCMC) simulations to estimate the duration and

hinning interval needed to generate stationary posterior param-
ter distributions, and multiple intermediate length MCMC
imulations to compare parameter percentiles. Geweke tests for
tationarity (Geweke, 1992; Plummer et al., 2006), Heidelberger
nd Welch (Heidelberger and Welch, 1983; Plummer et al., 2006)
ests for sufficient burn-in, monitoring of maximum within-
arameter autocorrelation (R Development Core Team, 2011) and
ffective sample size corrected for autocorrelation (Plummer et al.,
006) were all used to ensure sufficiently independent samples had
een generated.

. Results

.1. Statistical example

The example lognormal distribution and normal approximation
re shown in Fig. 1. Several obvious statistical patterns are visible:
1) the mode of the normal approximation is always smaller than
he median of the lognormal distribution, (2) the range of normal
pproximation was always narrower than the lognormal distribu-
ion, and (3) the percentiles of the normal distribution were always

ore extreme in the lower tail than for the lognormal regardless
f the mode. Importantly, the relative difference between the two
ercentiles increases as the percentile gets smaller; i.e., the 10th
ercentile of the normal approximation shows a bigger relative
eduction from the lognormal 10th percentile than occurs at the
0th percentile (the median). In some cases, the normal approxima-

ion also included density for values less than zero (impossible for
he lognormal). This artifact of the approximation is especially rel-
vant here, because such values would be considered biologically

2 The Pacific Fishery Management Council operates on a two-year management
ycle for most groundfish species (excluding Pacific hake). For simplicity, in this
aper we  focus only on the distribution of the first year of projected OFL in order to
rovide a more analogous comparison with Pacific hake.
Fig. 2. Time-series of SB (with ∼95% intervals) from the sablefish (upper panel) and
Pacific hake stock (lower panel) stock assessments.

implausible for most stock assessment parameters and derived
quantities.

3.2. Stock assessments
Fig. 3. Time-series of relative spawning depletion (with ∼95% intervals) from the
sablefish (upper panel) and Pacific hake (lower panel) stock assessments.
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ig. 4. Marginal distributions for quantities of management interest for sablefish. V

n a minimum effective sample size over all estimated parame-
ers of 894, and a maximum autocorrelation (at lag-1) of 0.11 (the
stimated process error SD for the survey index of abundance,
hich was highly right-skewed; see Stewart et al. (2011a,b) for
ore description of this parameterization). Nine percent of model

arameters had a Geweke statistic of absolute value >1.96 (∼5%
ould be expected by random chance), and all passed the Heidel-

erger and Welch test for sufficient burn-in. Due to the skewness of
he process error SD (an additive constant representing observation
rror not included in input estimates), and the symmetric approxi-
ation to the variance–covariance matrix used for the MCMC  jump

unction, it is expected that convergence to an uncorrelated chain
ould be slowest for this parameter. These diagnostics uncovered
o evidence of non-convergence and indicated that posterior dis-
ributions were unlikely to be appreciably changed by extended

CMC  simulations and that the percentiles of the distributions for
omparison in the analysis were likely to be reliably estimated.

Posterior distributions for the sablefish assessment were inte-
rated via a 25,000,000 draw MCMC  chain, removing the initial

hain value, and saving every 50,000th iteration, resulting in a min-
mum effective sample size over all estimated parameters of 228
an initial age-structure deviation, the next sparsest parameter, one
f the selectivity at age values, had an effective sample size of 299),
l lines represent the maximum likelihood estimate and the posterior median.

and a maximum autocorrelation (at lag-1) of 0.15 (an early recruit-
ment deviation). Just under 5% of model parameters had a Geweke
statistic of absolute value >1.96, and all passed the Heidelberger and
Welch test for sufficient burn-in. The parameters that were slow-
est to converge were very poorly informed recruitment or initial
age-structure deviations that were uncorrelated with key parame-
ters and management-related quantities. Similar to the Pacific hake
example, no evidence of non-convergence was identified.

SB and relative depletion (the ratio of the female SB in any year
to the average unexploited equilibrium female spawning biomass
[SB0]) MLE  time-series estimates were lower (on an absolute scale)
than posterior median values (Figs. 2 and 3; Tables 4 and 5); how-
ever, the MLE  and the mode of the Bayesian posterior for these
quantities were generally similar (Figs. 4 and 5). This was  due to
the degree of right-skewness in the posterior distributions. Uncer-
tainty, measured either by the breadth of the quartiles or the 95%
intervals was much greater for the posterior distributions for all
quantities (Tables 4 and 5). Further, the asymptotic approximation
tends to overestimate the likelihood of smaller 2011 stock sizes and

underestimate that of larger stock sizes (Figs. 4 and 5). The stan-
dard deviation of log-SB was  0.36 for sablefish (exactly equal to
the PMFC’s default level) and 0.41 for Pacific hake. Fishing inten-
sity, here measured by relative spawning potential ratio (SPR), was
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Table 4
Comparison of point estimates and distributions for sablefish.

Quantity 2.5th percentile 25th percentile Median or MLE  75th percentile 97.5th percentile

Unexploited average female SB (thousands mt)
MLE 124 162 182 202 240
Posterior 149 179 202 238 445

2011  Female SB (thousands mt)
MLE  16.4 45.6 61.0 76.3 105
Posterior 34.6 52.2 68.3 96.0 252

2011  Relative spawning depletion
MLE 18% 28% 33% 39% 49%
Posterior 20% 29% 34% 42% 57%

2010  Relative SPR
MLE  62% 89% 104% 119% 146%
Posterior 37% 78% 99% 114% 137%

Female  natural mortality
MLE 0.068 0.076 0.080 0.084 0.092
Posterior 0.068 0.075 0.080 0.085 0.094

Male  natural mortality
MLE 0.056 0.062 0.065 0.068 0.074
Posterior 0.055 0.061 0.065 0.068 0.075

2008  Recruitment deviation
MLE  0.73 0.89 0.98 1.06 1.23
Posterior 0.77 0.94 1.03 1.13 1.31

Log(Unexploited average age-0 recruitment)

f
r
m

i
s
e
S
S

T
C

MLE  9.58 9.86 

Posterior 9.70 9.95 

ound to be left-skewed (Figs. 4 and 5) with the cumulative poste-
ior distribution much greater at lower values than that based on
aximum likelihood.
The time-series of relative depletion based on MLE  and Bayesian

nference were relatively more similar than estimates absolute

tock size. Given the broad differences in the SB series’, this is
xplained by the correlations among parameters. For sablefish, the
B0 estimate was  90% correlated (based on the MLEs) with the 2011
B estimate, for Pacific hake this value was 51%. By comparison, SB0

able 5
omparison of point estimates and distributions for Pacific hake.

Quantity 2.5th percentile 25th percentile 

Unexploited average female SB (millions mt)
MLE  1.467 1.746 

Posterior 1.549 1.853 

2011 Female SB (million mt)
MLE  0.271 1.199 

Posterior 0.631 1.334 

2011 Relative spawning depletion
MLE  22% 66% 

Posterior 35% 68% 

2010  Relative SPR
MLE  36% 58% 

Posterior 30% 51% 

Steepness
MLE  0.641 0.779 

Posterior 0.570 0.730 

Natural mortality
MLE  0.176 0.201 

Posterior 0.185 0.210 

2008  Recruitment deviation
MLE 1.782 2.330 

Posterior 1.750 2.430 

Log(Unexploited average age-0 recruitment)
MLE  14.17 14.47 

Posterior 14.31 14.60 
10.01 10.16 10.44
10.11 10.32 11.08

was only 73% correlated with 2011 depletion for sablefish and 28%
for Pacific hake. This pattern illustrates the greater uncertainty in
absolute scale than in relative trend over time.

The posterior distributions for key model parameters were gen-
erally quite symmetric and did not differ considerably in central

tendency from MLEs (Figs. 6 and 7). The exceptions to this were the
additional variance components estimated for fishery-independent
surveys which were highly right-skewed (e.g., Fig. 8), although
largely uncorrelated with management related quantities.

Median or MLE  75th percentile 97.5th percentile

1.893 2.040 2.319
2.034 2.242 2.756

1.686 2.172 3.100
1.874 2.646 5.140

89% 112% 156%
91% 123% 203%

70% 81% 103%
64% 77% 105%

0.851 0.923 1.061
0.810 0.875 0.958

0.214 0.227 0.252
0.223 0.237 0.267

2.617 2.904 3.453
2.743 3.055 3.610

14.63 14.78 15.08
14.77 14.95 15.36
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espectively.

Future OFLs were more closely related to absolute stock size
han relative depletion estimates. In general, wider Bayesian inter-
als (greater uncertainty), could offset the higher medians relative
o MLE  values. However, the broader uncertainty in the posterior
istributions occurred largely in the upper tail of the distribution, so
he use of a percentile below the median for the probability of over-

shing did not offset the difference in point estimates. Differences

n direct catch advice from the two types of inference were sub-
tantial across a range of potential P* values (Table 6). The PMFC’s

able 6
xample of catch target calculations for sablefish and Pacific hake as a function of the dist
cientific uncertainty. Values in parentheses indicate percent of the posterior median for 

Probability of overfishing (P*) 10% 25% 

Sablefish
MLE  3513 (49%) 4930 (69%) 

MLE  Log-normal from SB 4096 5104 

Ralston et al. (2011) (57%) (71%) 

Posterior 4626 (64%) 5570 (78%) 

Pacific hake
MLE  290,229 (34%) 493,342 (58%) 

MLE  Log-normal from SB 424,635 544,624 

Ralston et al. (2011) (50%) (65%) 

Posterior 394,254 (47%) 580,041 (69%) 
rtical lines represent the maximum likelihood estimate and the posterior median

default method, using uncertainty in log-SB to calculate a percent
reduction from the OFL (Ralston et al., 2011) performed more like
the Bayesian inference, however the method was still based on the
MLE  and therefore consistently underestimated the OFL for a given
P*. The exception to this pattern was  observed at the smallest P*
value considered (0.1), where the method’s relative performance

was not consistent among the two  examples. This was likely due
to differences between the lower tail of the posterior and the strict
log-normal assumption in the default method. In both examples,

ributions for OFL and SB (mt), the probability of overfishing (*P), and the perceived
the OFL.

35% 45% OFL  (50%)

5604 (78%) 6208 (86%) 6502 (90%)
5657 6209 6502 (90%)
(79%) (86%)

6203 (86%) 6819 (95%) 7188 (100%)

589,887 (70%) 676,410 (80%) 718,502 (85%)
612,882 681,858 718,502

(73%) (81%) (85%)
683,036 (81%) 791,223 (94%) 844,069 (100%)
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verage  age-0 recruitment), and the 2008 log(recruitment deviation). Vertical lines

he likelihood-based approach was the most pessimistic regarding
uture OFL catches.

. Discussion

Exploiting fisheries resources sustainably has been the aim of
sheries management for a long time, but recent advances in stock
ssessment methodologies have paved the way for a more formal
nclusion of the uncertainty component in fisheries management.
his paper compares two methods for estimating uncertainty that
re frequently available using SS and other modeling applications
uilt with ADMB. As illustrated with the theoretical example and
bserved in the actual stock assessment results, the upper portion
f a distribution with a long right tail is systematically underes-
imated with a symmetric MLE  approximation. This is consistent
ith the coverage of Bayesian intervals recently documented via

imulation analysis (Magnusson et al., 2012). The spread of the
ower portion of the distribution is systematically overestimated

ith the MLE  approximation, with the degree depending on the
ercentile evaluated. Any truncation near zero will make this pat-
ern even more pronounced. In fact this issue is clearly identified
n the AD Model Builder manual (AD Model Builder. ADMB Project,
009) yet seems to be frequently lost in the rush to produce and
se assessment results. Fisheries stock assessment results that are

ssociated with minimum values, such as the probability that SB is
elow some threshold, will likely be biased due to these differences.

t is likely that the probability that a value is less than some criti-
al value is overestimated when using MLEs, since the assessment
ural mortality (upper left), male natural mortality (upper right), log(unexploited
sent the maximum likelihood estimates.

parameters frequently have little density below some minimum
value that is implausible given the catch history of the stock. At the
extreme, the MLE  approximation may  even include an appreciable
amount of probability less than zero, which is impossible.

For the stocks examined in this paper, the right skew of man-
agement measures based on MLE  estimates of SB suggest that the
setting of the OFL would be precautionary rather than risk-neutral
relative to the full posterior distribution. This is remains true for the
use of a catch reduction based log-SB (Ralston et al., 2011), although
that method could be improved by correcting for the mode vs.
median of the assumed distribution. Given the correlation between
fishing intensity and SB, the left skewed distribution for fishing
intensity is intuitive and the probability that fishing intensity is
below some threshold is likely underestimated. For management
systems that manage on fishing mortality thresholds not estimated
within the stock assessment model (e.g., International Council for
the Exploration of the Sea [ICES]), this effect could result in addi-
tional precaution relative to target and limit reference points.

The patterns observed in this analysis may  be related to a basic
asymmetry in the information content of most fisheries data-sets:
there must be a minimum stock size which was capable of having
generated the observed catch time-series, but there may  be little
information in the data to rule out much larger stock sizes. Because
uncertainty about MLEs is generally assumed to be symmetric, a

right-skewed distribution will always be underestimated in the
upper tail, and overestimated in the lower tail – precisely where
management advice is most sensitive. In the converse, posterior
distributions may  contain appreciable probability over very large



I.J. Stewart et al. / Fisheries Research 142 (2013) 37– 46 45

F ral mo
2 stima

b
c
h
s

a
f
2
t

F
t
t

ig. 7. Marginal distributions for select parameters for Pacific hake, including: natu
008  log(recruitment deviation). Vertical lines represent the maximum likelihood e

iomass levels. Whether this poses an issue to their direct use in
alculating probability distributions for the application of P*, and
ow best to incorporate additional information about ‘plausible’
tock sizes, remains an open question.

The two methods compared here differ in philosophy, and

lthough we do not wish to feed the ongoing debate between
requentists and Bayesians (see Dennis, 1996; Carlin and Louis,
000, Chapter 1) there is a fundamental difference between these
wo approaches in relation to how the PFMC sets catch levels.

ig. 8. Marginal distributions for the additive extra standard deviation component
o observation error for the acoustic survey for Pacific hake. Vertical lines represent
he  maximum likelihood estimates.
rtality (upper left), steepness, log(unexploited average age-0 recruitment), and the
tes.

Bayesian results provide the ability to make probabilistic state-
ments about a parameter of interest, which is what US fishery
managers attempt to do when applying P* and buffering a catch
level. The P* approach requires calculation of the probability that
the chosen catch level is less than or equal to the OFL. Although
MLEs, and proxies derived from them, may  serve as an interim solu-
tion, interpreting an interval which will contain the true parameter
as a probability is awkward compared to directly specifying the
probability distribution with a posterior distribution.

Several alternate methods are available for generating asym-
metric distributions about point estimates. Log-transformation
of model parameters such as spawning biomass could be used
to approximate the skewed posterior distributions observed in
these examples. The performance of this and other potential
transformations could be explored via simulation experiments.
Implementation would require additional coding, but probably
not substantially increased computational demands. Likelihood
profiles are also relatively straightforward for directly estimated
parameters, however they require a penalty function for derived
quantities (including most outputs of management interest), which
can be technically problematic. Such penalty functions are avail-
able in the underlying ADMB language (Fournier et al., 2012) and
could be easily implemented. Bootstrapping (Efron and Tibshirani,

1994) is another method that which can provide asymmetric dis-
tributions for derived parameters. It is a time-consuming process,
since “new” data must be simulated (either via independent code,
or within SS), and the estimation conducted for each realization.
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The analysis described here represents a comparison of uncer-
ainty within the specified stock assessment model, but does
ot include uncertainty due to model misspecification, functional

orms, fixed parameters, and choice or weighting of data. These
ypes of uncertainty are often investigated through sensitivity anal-
sis, which generally entails perturbing model input data, structure
r fixed parameter values and comparing the results. Although use-
ul for generating decision tables with alternate ‘states of nature’,
ensitivity results are rarely amenable to the calculation of quanti-
ative probabilities and therefore cannot be easily incorporated into
*-type calculations. No single uncertainty distribution from a stock
ssessment model should be considered ‘correct’, since they are
erely approximations of reality. The utility of these approxima-

ions must be interpreted with a careful inspection of nonrandom
atterns in residuals to model fit, violation of error distribution
ssumptions, and other sources of unidentified bias present in data
ources and the estimates of model parameters. These issues can
e corrected, through re-parameterizing model structure, apply-

ng alternate error distributions and similar approaches, but only if
dentified. One such diagnostic is the relative corroboration of the
osterior mode and maximum likelihood estimate. Where these
iffer considerably, model behavior should be investigated further
efore strict quantitative interpretation is made of either the point
stimates or the uncertainty in those estimates.

Subjective decisions during all stages of data processing and
odel development are frequently discussed, but their effects are

arely understood in nearly all stock assessment analyses. There-
ore it would be reasonable to think of the amount of uncertainty
hat is measured within an assessment model, for a single real-
zation of the observed data and process of analysis as a minimum
stimate. Despite this fact, fisheries managers must still make deci-
ions and set catch levels. We  suggest that the information provided
n this analysis may  be useful to spark further research (both meta-
nalysis and simulation studies) to investigate better application of
urrently available estimators and perhaps derive new methods to
mprove the performance of P*-style approaches.

In the meantime, where only one type of inference is available
or fisheries managers, the asymmetry apparent in these two  exam-
les may  be important for management decision-making and may

ead to lower projected catch levels when based on MLE  results
lone. Where management takes explicit account of uncertainty,
n some cases adding a precautionary buffer that scales with the
elative uncertainty in point estimates, the differences in catch
dvice may  turn out to be important and the reductions from point
stimates non-linear.
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