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Many  stock  assessments  fix  values  for  influential,  but  poorly  known,  parameters  such  as  the  natural
mortality  rate  or  the steepness  of  the  stock-recruitment  relationship,  which  leads  to published  estimates
of uncertainty  being  underestimates.  The  delta  method,  in  which  the  partial  derivatives  of  the  model
outputs  with  respect  to all of  the  parameters  of  the  model  can  be  easily  obtained  numerically  using
likelihood  profiling,  can  be  used  to  provide  quick,  but  approximate,  estimates  of  precision  for  model
outputs  when  some  key  parameters  are  fixed.
. Introduction

There has been a progressive improvement in the ability to
stimate the precision of management quantities reported in fish
tock assessments given the steadily increasing computing power
s well as ongoing software development. Moreover, in the United
tates, the need to estimate precision has recently become urgent
ue to passage of a new administrative requirement to account
or “scientific uncertainty” in the setting of annual catch limits
Department of Commerce, 2009). However, some critically impor-
ant parameters are conventionally fixed rather than estimated
ithin assessments. Ironically, the values of these parameters are
xed often because they are poorly known or are difficult to esti-
ate from available data, but their treatment as fixed has the

tatistical implication that they are known without error! About
alf of the assessments of rockfishes (Sebastes spp.) off the US
est coast fix the value for stock-recruitment steepness (h) based

n a meta-analysis by Dorn (2002) and subsequent unpublished
pdates. Most of these assessments also fix the value of the natural
ortality rate (M),  and nearly all fix the value of �R, the preci-

ion statistic describing the variability of recruitment anomalies
bout the fitted stock-recruitment relationship (SRR). The uncer-
ainty associated with these fixed parameters is rarely addressed
ther than by a tabulated sensitivity analysis, and does not appear
n the reported estimates of precision. However, the variance of,
or example, reported terminal year biomass estimates among a

equence of stock assessments for the same stock is known to be
uch larger than the reported within-assessment estimation vari-

nce for any one assessment. For example, Ralston et al. (2011)
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found that the among-assessment coefficient of variation (CV) in
biomass estimates was 37% for 17 data-rich assessments of U.S.
west coast groundfish and coastal pelagic fishes, but the within-
assessment “reported” CV was  only 18%.

Modern stock assessment packages often provide variance
estimates that quantify uncertainty, conditionally on any fixed
parameters. Resampling (bootstrap) analysis is used in the case
of virtual population analysis (VPA), while inversion of the Hes-
sian matrix is used with maximum likelihood models such as Stock
Synthesis. Sampling of parameter vectors from Bayesian poste-
riors using the Markov chain Monte Carlo (MCMC) algorithm is
now popular, and is becoming a preferred approach (Magnusson
et al., in press). However, these approaches require that all influen-
tial parameters be estimated, and can produce severely negatively
biased estimates of variance when uncertain parameters are fixed.

The delta method for estimating the variance of functions
of parameters was elaborated by Cramér (1946),  and was pro-
moted in operations research by Koopman (1946) and Morse
and Kimball (1951),  this being why Hilborn and Mangel (1997)
refer to the delta method as the method of “navy math.”
The delta method was popularized in animal ecology by Seber
(1973).  This method can be argued to be a logical exten-
sion of the sensitivity analyses that are often included in
modern stock assessments. This paper demonstrates that the
delta method is a practical approach for obtaining approximate
estimates of variance for stock assessments that fix parame-
ters.

A stock assessment (or more specifically, any of its outputs) can
be viewed as an elaborate function to which the delta method can

be applied. Applications of the delta method to VPA-based stock
assessments were reported by Sampson (1987),  Prager and MacCall
(1988), Pelletier (1990),  and recently by Hillary (in press).  Maunder
et al. (2006) used the delta method as a parametric alternative

dx.doi.org/10.1016/j.fishres.2012.07.018
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:Alec.MacCall@noaa.gov
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Fig. 1. Examples of numerical calculation of partial derivatives. Thick
A.D. MacCall / Fisheries

o stochastic projections of the uncertainty in future stock status.
owever, as a case in point, that investigation fixed M and did not
se the delta method to explore uncertainty in M as a source of

mprecision in the projections. Magnusson et al. (in press) found
hat the performance of the delta method was fairly comparable to
hat of MCMC,  but their investigation was restricted to parameters
hat were estimated.

. The delta method

.1. Theory

Seber (1973) gives a relatively transparent form of the delta
ethod for approximating the variance of a function g(x̄):

[g(�x)] ≈
n∑

i=1

V [xi]

(
∂g(�x)
∂xi

)2

+ 2
∑
i<j

∑
cov[xi, xj]

×
(

∂g(�x)
∂xi

)  (
∂g(�x)
∂xj

)
(1)

here −→x denotes a vector of parameters with elements xi (i = 1,
, 3, . . .), and g(−→x ) is a function of those random variables. The
elta method is based on a Taylor series expansion of the function
, and is evaluated at the means of the individual elements. In Eq.
1),  bias and higher order (quadratic) terms in the Taylor expan-
ion are ignored. In the applications presently being considered,
he parameters −→x  are those parameters that are fixed, typically
,  �R, and an SRR shape parameter such as h (defined by Mace

nd Doonan, 1988), though other fixed parameters may  also be
onsidered; importantly, in the context of the delta method, all of
he parameters estimated by the model are treated as “nuisance
arameters” that may  need to be re-estimated to maintain the
roperty of conditional maximum likelihood given alternative val-
es of the fixed parameters. The function g represents an estimated
uantity produced by the assessment, such as current spawning
tock biomass (SSBcurrent), management reference points such as
he unfished biomass (SSBunfished) or the biomass corresponding to

aximum sustainable yield (Bmsy), and composite status indicators
uch as current relative stock size (SSBcurrent/SSBunfished). The orig-
nal fixed-parameter model is denoted as g(·) and the conditional
ariance estimate obtained from the model before application of
he delta method as V[g(·)]. This conditional variance is treated as
ndependent of the fixed parameters.

Eq. (1) is a sum of estimated variance components
�
V [g(xi)] in

he simple, but common, case where the fixed parameters are −→x =
M, h, �R), and they are assumed to be independent, i.e., Cov(M,
) = 0. As shown in Eq. (1),  each individual variance component is
stimated as the product of the variance of the fixed parameter
nd the square of the partial derivative of the estimated assess-
ent quantity g(xi) with regard to that parameter. Accordingly, in

he simple case of independence among the fixed parameters, the
elta method estimate of the variance of an estimated quantity g
ecomes:
[g(−→x )] ≈ �
V [g(·)] + �

V [g(M)] + �
V [g(h)] + �

V [g(�R)] (2)

q. (2) allows the relative contribution from each source of variance
o the overall variance to be calculated because the total variance
s the sum of individual components. The contribution of covari-
nces among fixed parameters can be negative, which complicates
ominal partitioning of variance components.
line is likelihood profile, thin line is finite difference. Upper: Profile
∂(SSB)/∂M = 21.5E6 yr-tons, Finite difference ∂(SSB)/∂M = −32.9E6 yr-tons. Lower:
Profile ∂(SSB)/∂h = 0.286E6 tons, Finite difference ∂(SSB)/∂h = 2.33E6 tons.

2.2. Calculation

Appendix A describes a spreadsheet for performing the calcula-
tions. The two  main issues are calculation of partial derivatives and
specification of prior variances and covariances.

2.2.1. Derivatives
Partial derivatives are easily calculated using numerical meth-

ods. The assessment model is re-run (using identical convergence
criteria) at slightly higher and lower values for each fixed param-
eter, and partial derivatives are calculated numerically. Using
perturbations of equal distance � above and below the fixed
parameter value, the approximate partial derivative is calculated
numerically as a slope (Abramowitz and Stegun, 1972) by:

∂g(−→x )
∂xi

≈ g(xi + �)  − g(xi − �)
2�

(3)

where other parameters xj /=  i are held at the fixed values used in
the assessment. In practice, it is advisable to compare results from
alternative values of � to ensure that the estimated derivative is
a good estimate of the slope of the function in the vicinity of the
pre-specified value for the fixed parameter (Fig. 1).

There are two  possible ways to calculate this partial deriva-
tive in SS. A strict “finite difference” approach would hold all
nuisance parameters fixed while changing only the single param-
eter xi. The “profile likelihood” allows nuisance parameters to be
re-estimated to achieve a conditional maximum posterior den-
sity given the alternative values of xi ± � (for technical aspects
of these approaches, see Cox (1975),  and Murphy and van der
Vaart (2000)). In either case, parameters xj /=  i are kept at their fixed

values. The partial derivatives obtained using these two methods
need not be similar (Fig. 1), and could give quite different results
when used in the delta method. I argue that the likelihood profile
approach is correct for use in the delta method. From a fundamental
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Table 1
Precision of Pacific whiting stock assessment. Biomasses are in million tons.

Quantity femSSB2011 relSPR2010 SSB2011/SSBunfished

“SS free” MPD  estimatea 1.69 0.695 0.89
CV SS freea 0.428 0.244 0.382
Lower (25 percentile) 1.20 0.58 0.66
Upper (75 percentile) 2.17 0.81 1.12
50% interval width 0.97 0.23 0.46

MCMC  mean estimatea 1.87 0.64 0.91
Lower (25 percentile) 1.33 0.51 0.68
Upper (75 percentile) 2.65 0.77 1.23
50% interval width 1.32 0.26 0.55

Delta method with �ln(M) = 0.1, using likelihood profile
“SS fixed” MPD  estimate 1.69 0.695 0.89
CV base (from SS fixed) 0.411 0.209 0.372
Variance portion from base 89% 68% 85%
Variance portion from M 10% 31% 5%
Variance portion from h 0% 0% 1%
Variance portion from �R 1% 1% 9%
CV delta methodb 0.435 0.253 0.403

50% confidence interval
Lower (25 percentile) 1.19 0.58 0.65
Upper (75 percentile) 2.18 0.81 1.13
50% interval width 0.99 0.23 0.48

Delta method with �ln(M) = 0.1, using finite difference (incorrect)
CV delta method 0.528 0.457 0.577
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Fig. 2. Time-trajectories of estimated coefficients of variation (CV) for the spawning
a “SS free” and MCMC use a fixed value of �R (see Stewart et al., 2013).
b CVs are 0.433, 0.252, and 0.384 if �R is fixed at 1.3 as in the “SS free” model.

iewpoint, maximum likelihood parameter estimates are explicitly
onditional on the data given to the model. The likelihood pro-
le approach preserves this property, while the finite difference
pproach loses all connection to the underlying data. From a prac-
ical viewpoint, the likelihood profile allows the delta method to
roduce very similar estimates to the corresponding asymptotic
stimates if the parameter is estimated, while the partial deriva-
ives from finite differencing do not (Table 1).

.2.2. Variances
Variances for the parameters in Eq. (1) can be difficult to specify,

nd their coefficients of variance may  have to be based on “educated
uesses”. Prior probability distributions for model parameters may
ave been developed in some cases, such as from meta-analysis.
eta-analyses for h exist both on a regional scale (e.g., Dorn, 2002;

orrest et al., 2010) and on a worldwide scale (Myers et al., 1999,
002). Approximate variances for h can be derived from re-analysis
f information on distribution percentiles (Dorn, 2002) or from con-
dence limits (Myers et al., 1999). If it is not possible to derive

 variance for h from such sources, Dorn’s (2002) results suggest a
entative rule-of-thumb that the approximate value of the standard
rror (�h) for Beverton–Holt SRR steepness is half the distance to
he nearest boundary (the bounds being 0.2 ≤ h ≤ 1). For example if

 is fixed at 0.6, �h ≈ 0.2, and if h is fixed at 0.8, �h ≈ 0.1. The author
s unaware of meta-analyses that provide a useful prior probabil-
ty distribution for �R, but tentative values can be based on ad-hoc
omparisons with assessments for similar species.

Two well-established empirical relationships for estimating M
re those of Pauly (1980) and Hoenig (1983).  Pauly gives a �ln(M)
f 0.56 for estimated ln(M)  based on growth and temperature
note: this value has been converted from the original value which
as given in units of log10). Hoenig’s relationship between M and
aximum observed age did not include an estimate of precision,
ut re-analysis of his original data for fish (Hoenig, 1982) repro-
uces the original regression parameters, and gives a �ln(M) of 0.50.
nother recent growth-based method for estimating M developed
y Gislason et al. (2010) gives a �ln(M) of 0.72, which is less precise
stock biomass (SSB) of Pacific whiting. Heavy solid line is “SS free” (M and h are
estimated); lower dashed line is “SS fixed” (M and h are fixed), light solid line is the
delta method applied to “SS fixed” with �ln(M) = 0.1.

than the relationships developed by Pauly or Hoenig. The CV of M
can easily be obtained from �ln(M): for a lognormal distribution,
Johnson et al. (1994) give the coefficient of variation of a lognormal
variate as CV = (exp(�2) − 1)½, so if �(ln M)  = 0.5, then CV(M)  = 0.53.

The covariances among M,  h and �R are especially difficult to
obtain, but there is some support for ignoring covariances. Myers
et al. (2002) examined 246 assessed fish stocks, and concluded that
h is negatively correlated with M only for short-lived species, with
reproductive longevity up to 5 yrs. A meta-analysis by Shertzer and
Conn (2012) also failed to find a relationship between h and M.  This
suggests that the term cov[M,  h] in Eq. (1) can be ignored except for
short-lived fishes. To the author’s knowledge, there is no evidence
that �R is strongly correlated with either M or h.

3. Examples

Two  examples are explored. The Stock Synthesis assessment for
Pacific whiting (Merluccius productus)  also allows comparison with
MCMC  results, and is taken from Stewart et al. (2013). The delta
method calculations for Pacific whiting follow the spreadsheet out-
lined in Appendix A. A VPA assessment for Georges Bank haddock
(Melanogrammus aeglefinus)  is taken from Brooks et al. (2008);
additional model runs were provided by E. Brooks (NMFS-NEFSC,
Pers. Comm.).

3.1. Pacific whiting

Stewart et al. (2013) quantify the uncertainty of model out-
puts from an SS model using asymptotic standard errors as well as
MCMC  sampling of this model cast in a Bayesian framework. Their
SS model (“SS free”) estimated M and h (both subject to priors), but
fixed �R = 1.3. I developed an alternative model (“SS fixed”) where
M and h were fixed at their maximum posterior density estimates
(0.214 yr−1 and 0.851), emulating a common practice in more data-
limited US west coast groundfish assessments. The delta method
applied with the relatively precise prior of �ln(M) = 0.1 adopted by
Stewart et al. (2013) to the “fixed” model leads to CVs that are quite
close to the asymptotic CVs from the “free” model, clearly demon-
strating the performance of the approximation (Fig. 2). In contrast,
and as expected, the asymptotic CVs from the “fixed” model were
tighter than the delta method CVs (Table 1 and Fig. 1). The delta
method estimates for Pacific whiting also address imprecision in

�R, a parameter that was fixed by Stewart et al. (2013).  The delta
method results shown in Table 1 indicate that the additional vari-
ance due to uncertainty in �R is negligible for estimated female
biomass in 2011 (femSSB2011) and the relative spawning potential
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Table  2
Precision of Georges Bank haddock stock assessment. Biomasses are in 105 tons.

Quantity (g) SSB2007 F2007 SSBmsy SSB2007/SSBmsy

CV VPA bootstrap 0.199 0.165 0.26 0.199
Base variance V[g(·)] 0.394 0.00144 0.173 0.156

Change in function values used in the calculation of partial derivatives
g(M  = 0.18 yr−1) 2.98 0.239 1.33 2.24
g(M  = 0.20 yr−1) (base) 3.16 0.230 1.59 1.99
g(M  = 0.22 yr−1) 3.37 0.219 1.59 2.11
Partial derivative 9.75 −0.500 6.50 −3.25

Delta method with �ln(M) = 0.5 (CV = 0.53)
Variance from M 1.068 0.00281 0.475 0.119
Total variance 1.462 0.00425 0.648 0.275
Portion from base 27% 34% 27% 57%
Portion from M 73% 66% 73% 43%
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difficult to anticipate. For example, length-based assessments can
CV Delta method 0.384 0.287 0.518 0.264

atio in 2010 (relSPR2010), but has a small (9% of total estimated
ariance) impact on the CV of the estimated relative biomass in
011 (SSB2011/SSBunfished).

The delta method, in common with the asymptotic precision
stimates from SS (provided in the SS3.std, SS3.cor and covar.sso
les), is based on a normal approximation in the immediate vicin-

ty of the point estimate to the sampling distribution for a model
utput. These analytic methods provide no information about the
hape or tails of the distributions. For this reason it is more use-
ul to describe a tentative 50% confidence interval or inter-quartile
ange rather than to extrapolate to a conventional 95% confidence
nterval as the latter makes strong assumptions about the shape of
he distribution. The MCMC  credibility intervals from Stewart et al.
2013) provide a more thorough description of uncertainty, includ-
ng the shape of the distribution and shifts in central tendency
mode or mean). However, except for shifts in central tendency,
he delta method leads to inter-quartile ranges that are similar to
oth the asymptotic estimates from Stock Synthesis with estimated
arameters and those from MCMC  sampling (Table 1).

.2. Georges Bank haddock

This example (Table 2) is drawn from the “GARM3” collection of
roundfish assessments (Brooks et al., 2008), but it must be noted
hat the assessment was subsequently revised (L. Brooks, NEFSC,
ers. Comm.). The results presented here are therefore only illus-
rative. The assessment is based on aged landings and extensive
shery-independent trawl surveys, and utilizes VPA with a fixed
atural mortality rate of M = 0.2 yr−1. The reported results appear
o be precise, based on bootstrap resampling of age compositions,
ut are conditional on the fixed value of M.  Management reference
oints are estimated externally to the stock assessment. The target
shing mortality rate (Fmsy) is a proxy value based on a spawning
otential ratio (SPR) of 40% and recent selectivity patterns, and is
eported implicitly as being exact. The target biomass (SSBmsy) is
stimated by conducting Monte Carlo forward projections of the
ecent recruitments from the assessment model to equilibrium
nder the proxy Fmsy fishing mortality rate, using the empirical dis-
ribution of recruitment to spawning stock biomass ratios. Brooks
t al. (2008) report a mean projected SSBmsy of 158,000 tons, with a
0% confidence interval (CI) of 96,000–230,000 tons. Details of the
istribution are not reported, but the 90% CI is nearly symmetrical
t ±42% of the mean, and translates to an approximate CV of 0.26
ssuming normality.
The delta method was used to estimate the imprecision associ-
ted with the fixed natural mortality rate, using the Hoenig-based
rior �ln(M) = 0.5 or CV(M)  = 0.53. Although a tighter CV for M could
e considered, the entrenched practice of assuming the same value
rch 142 (2013) 56– 60 59

of M = 0.2 yr−1 for the majority of New England stocks suggests
that the full range of ancillary evidence is not being considered
and therefore the CV is not as small as it could otherwise be. VPA
is not a likelihood-based approach, and does not support internal
estimation of M,  precluding improvement in posterior precision.

Table 2 includes some details of the implementation of the delta
method. The bootstrap precision reported in the assessment is
taken as the base variance V[g(·)]. M is the only fixed parameter. The
delta method CVs for haddock spawning stock biomass (SSB2007)
and current fishing mortality rate (F2007) are about double those
reported from the bootstrap analysis, and the majority of the vari-
ance is associated with M.  The uncertainty about target biomass is
strongly influenced by uncertainty in M,  with a delta method CV
of 0.518. However, current stock abundance relative to the target
abundance has a much tighter delta method CV of 0.265 because
of cancellation of similar effects of M on estimated biomass in the
numerator and denominator of the ratio (i.e., covariance).

Table 2 also demonstrates a problem that arises frequently
in numerical calculation of partial derivatives, especially in the
absence of rigorous criteria for model convergence. The SSB2007 and
F2007 have a fairly linear trend over the range of M ± 0.02, but SSBmsy

has a much steeper slope (local partial derivative) on the lower side
of M (which could possibly be an artifact of the projection method-
ology used for haddock), and SSB2007/SSBmsy, has opposite signs of
slopes above and below M = 0.2 yr−1! In this case, the delta method
attempts to project the effect of imprecision in M into regions where
the partial derivative at M = 0.2 yr−1 does not accurately describe
the nearby response. A Monte Carlo exploration of the effect of
imprecise M would be a better approach for evaluating the pre-
cision in this case. If estimated SSB2007/SSBmsy is a minimum at
M = 0.2 yr−1, and is higher at values of M both immediately above
and below 0.2 yr−1, it can be concluded that the expected value of
this ratio is higher than is reported in the assessment over the range
of possible M.  In fairness, assessments (whether VPA or maximum
likelihood) usually report modal values, and cannot report expected
values without further analysis such as a Monte Carlo exploration.
An approximation of the expected value can be obtained by another
form of the delta method, which uses second partial derivatives to
estimate bias (viz. Seber, 1973), but that application is beyond the
scope of this paper.

4. Discussion

The delta method provides a practical solution to the prob-
lem of estimating precision of assessment quantities when some
parameters are pre-specified. The calculations are easy to imple-
ment in a spreadsheet format and can be conducted in a few
hours for most VPA or SS assessments. Delta method results tend
to be comparable to asymptotic precision estimates from SS if
the parameters are estimated. Thus, to the extent that asymptotic
estimates of precision are routinely presented in stock assess-
ments, a more complete accounting of uncertainty by means of
the delta method has analogous and possibly equivalent properties.
Although Bayesian posterior distributions of assessment quantities
are more complete, they are not possible for VPAs and often require
many days of computing for SS in the rare cases where they are
derived at all.

The reader must be cautioned to avoid generalizing patterns of
imprecision from the two  examples provided here. Data properties
and model specifications can influence imprecision in ways that are
be especially sensitive to the value of �R. Fortunately, the calcula-
tions needed for the delta method are easily conducted in a short
time, and there is no obstacle to fully evaluating the approximate
precision of most assessment models.
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ppendix A. A spreadsheet implementation of the delta
ethod

Each row in the following spreadsheet produces a delta method
stimate of the precision of a corresponding quantity reported in
he *.std list produced by Stock Synthesis or ADMB.

Columns are indicated by letters:
ection 1: Base model with fixed parameters
. Names of estimated quantities
(column of names is pasted from element 2 of the *.std file of base model)

.  Estimated values with fixed parameters
(column of estimates from element 3 *.std file of base model)

.  Estimated standard deviations
(column of base standard errors from element 4 *.std file of base model)
Note, columns A–C are cut from *.std and pasted in a single operation.

ection 2: Numerical estimation of partial derivatives
Select appropriate size of difference, �M .
(Caution, precision of M may  elsewhere be expressed as �ln(M) , causing
confusion.)
.  Estimated values of quantities using fixed parameter M + �M

(estimates are pasted from element 3 of *.std file from output of model with
M  + �M)

. Estimated values using fixed parameter M − �M (pasted from *.std file)
Inspect values to determine if a smaller �M is needed.

.  Partial derivative with respect to M: column F = (column D − column E)/2�M

Select appropriate size of finite difference, �h

. Estimated values using fixed parameter h + �h (pasted from *.std file)

.  Estimated values using fixed parameter h − �h (pasted from *.std file)
Inspect values to determine if a smaller �h is needed.

.  Partial derivative with respect to h: column I = (column G − column H)/2�h

Repeat sets of three columns for additional fixed parameters, �R , etc.

ection 3: Estimation of variance components, using �M (not � ln(M)), �h, and possibly
cov(M, h)

. Base model variance is column C × column C
.  Variance component from M is column F × column F × �M × �M

. Variance component from h is column I × column I × �h × �h

.  If covariance (M,  h) is non-zero, covariance component is 2 × column
F  × column I × cov(M, h)

ection 4: Delta method calculation
. Estimated total variance is column J + column K + column L + column M
.  Estimated standard error is SQRT (column N)
.  Estimated coefficient of variation is column B/column
.  Fraction of variance from base is column J/column N
.  Fraction of variance from M is column K/column N
.  Fraction of variance from h is column L/column N
.  Relative size of covariance correction is column M/column N
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