Fisheries Research 125-126 (2012) 27-39

Contents lists available at SciVerse ScienceDirect

Fisheries Research

journal homepage: www.elsevier.com/locate/fishres

Performance of methods used to estimate indices of abundance for highly
migratory species
Patrick D. Lynch®*, Kyle W. Shertzer®, Robert ]. Latour?

2 Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States
b National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, Center for Coastal Fisheries and Habitat Research, 101 Pivers Island Road, Beaufort, NC 28516,
United States

ARTICLE INFO ABSTRACT

Article history:

Received 17 October 2011

Received in revised form 3 February 2012
Accepted 4 February 2012

Estimating indices of abundance from fishery-dependent data requires that catch-per-unit-effort (CPUE)
be standardized to account for factors that may have affected CPUE but are not related to changes in abun-
dance. Such standardization is particularly important for highly migratory species (e.g., tunas, pelagic
sharks, and billfishes), because of time-varying mismatches between distributions of abundance and the
distribution of fishing effort. Two commonly applied methods for standardizing CPUE are generalized

g%"é"srtiidardizmon linear models (GLMs), which can account for changes in fishing practices in a straightforward linear
Habitat fashion, and habitat-based standardizations (e.g., statHBS), which use nonlinear analysis to relate the
Tuna distribution of fishing effort to the species distribution. We evaluated the accuracy of these methods over
Billfish three patterns in vertical catchability as related to ocean temperature profiles, and 50 possible biomass

trajectories using a simulation framework that followed the general effort dynamics of the Japanese
longline fishery in the Atlantic Ocean from 1956 to 2009. Additionally, we propose a method for directly
incorporating vertical habitat information into the linear models. Overall, we found the most accurate
approach to be a delta-lognormal GLM with our unique habitat factor. The statHBS approach was the
most accurate when catchability was simulated to peak in surface waters. However, statHBS was much
more sensitive to errors in estimates of longline hook depths (i.e., habitats exploited). Based on these
results, we recommend that relative abundance be estimated for highly migratory species following a
delta-GLM approach that considers vertical habitats fished.

Population dynamics

© 2012 Elsevier B.V. All rights reserved.

1. Introduction organisms, information on distribution and abundance is primarily

obtained through catch and effort data from fisheries that either

Management decisions in fisheries are often guided, at least in
part, by the results of stock assessments. Therefore, in the inter-
est of scientific integrity and sound management, it is important
that scientists provide managers with accurate characterizations
of stock dynamics and stock status. Assessment models often use
fishery catch data and other inputs to estimate biomass trajecto-
ries and stock parameters by fitting predicted biomass to externally
derived indices of relative abundance (Maunder and Starr, 2003).
Such indices of abundance serve as ‘observed’ abundance trends
and thus have an influence over the assessment results.

When derived from fishery-independent surveys that monitor
the stock(s) being evaluated, indices of abundance may reliably
depict abundance trends. However, many exploited species are
either not monitored or not monitored comprehensively. For these

* Corresponding author. Tel.: +1 804 684 7885; fax: +1 804 684 7327.
E-mail addresses: pdlynch@vims.edu (P.D. Lynch), Kyle.Shertzer@noaa.gov
(K.W. Shertzer), latour@vims.edu (R.J. Latour).

0165-7836/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.fishres.2012.02.005

target or incidentally catch these species. To estimate relative
abundance from these data, it is common practice to adjust the
catch by the corresponding amount of effort and assume a pro-
portional relationship between catch-per-unit-effort (CPUE) and
abundance. However, because fisheries are not designed to collect
random unbiased samples of the harvested populations, fishery-
dependent CPUE must be standardized to account for factors (e.g.,
changes in fishing practices) that may cause the proportionality
constant (catchability) to be time-varying (Wilberg et al., 2010;
Ye and Dennis, 2009), thereby violating the assumed relationship
between CPUE and abundance. Numerous approaches are available
for standardizing CPUE to estimate relative abundance (Maunder
and Punt, 2004); thus, to promote confidence in stock assessment
results it is important to evaluate proposed methods under various
assumptions and real-world conditions.

Highly migratory species (HMS) represent valuable global
resources, but the high cost associated with a large scale pelagic
survey has prevented the development of comprehensive monitor-
ing programs for HMS (Bishop, 2006). Therefore, estimated trends
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inabundance for HMS are typically derived from fishery-dependent
data. Given the extensive spatial and temporal coverage of many
HMS fisheries, such as the Japanese longline fishery (JLL), these
time series, ifappropriately standardized, may be capable of captur-
ing true patterns in abundance. Longline data represent important
sources for estimating indices of abundance for many HMS, but
these data require careful consideration.

Changes in fishing practices within the JLL (Ward and
Hindmarsh, 2007; Yokawa and Uozumi, 2001) have resulted in
changes in vertical habitats exploited over time. Perhaps the most
notable modification was a shift to deeper target habitats in
response to a change in target species from yellowfin tuna, Thunnus
albacares, and albacore, Thunnus alalunga, to bigeye tuna, Thunnus
obesus, and bluefin tuna, Thunnus thynnus. While many HMS are
known to exhibit vertical migrations, they have been shown to
spend a large percent of their time in a relatively small depth or
temperature (relative to the surface) range (Goodyear et al., 2008;
Graves et al.,, 2002; Hoolihan et al., 2011; Horodysky et al., 2007;
Kerstetter et al., 2003; Prince et al., 2010; among others). Consid-
ering the shift in JLL target habitat, the vertical distributions of
HMS suggest that the proportion of their stocks removed by a given
unit of effort (catchability) has not been homogeneous over time
with respect to the vertical habitats exploited. This emphasizes
the importance of including vertical fishing habitat in the CPUE
standardization process when estimating relative abundance.

Historically, there have been two general classes of approaches
to including vertical habitat information in CPUE standardization
for HMS: generalized linear models (GLMs) and habitat-based stan-
dardization (HBS) (Goodyear, 2003; Hinton and Nakano, 1996;
Maunder et al., 2006). In a GLM, environmental data are typically
considered indirectly by including variables related to longline gear
configurations as fixed effects to serve as proxies for habitats fished.
Habitats are directly included with HBS, and this approach has
been used to estimate relative abundance for several HMS in the
Pacific Ocean (Bigelow et al., 2002; Bigelow and Maunder, 2007;
Hinton and Nakano, 1996; Langley et al.,, 2005; Maunder et al.,
2006). The HBS approach was originally described as a determin-
istic model (Hinton and Nakano, 1996); however, the preferred
method is cast in a statistical framework (statHBS; Maunder et al.,
2006). In the statistical approach, the relative catchability from a
given pre-specified vertical habitat is estimated by relating the total
catch for a longline set to the amount of effort estimated to occur
in each habitat for each set (see Section 2.2 for more details). The
GLM approach is commonly used for Atlantic HMS; for example,
blue marlin, Makaira nigricans, CPUE from the United States long-
line fishery was standardized using a delta-lognormal GLM with
fixed effects for area, fishing characteristics, and gear characteris-
tics (Ortiz and Hoolihan, 2010). The GLM and HBS approaches may
provide different trends in abundance, which have been shown to
affect assessment results (Uozumi, 2003). Accordingly, comparing
and evaluating the accuracy of GLMs and HBS has been identified
as an important research priority (ICCAT, 2004).

In addition to changes in exploited habitats, another common
consideration is the proportion of records with zero catch (Maunder
and Punt, 2004). For pelagic longline fisheries, this proportion can
be relatively high, particularly for bycatch species. A high propor-
tion of zero catches may violate the assumptions of the statistical
analysis, and when the data are assumed to follow a lognormal
probability distribution (a common assumption), computational
issues arise because the natural logarithm of zero is undefined.
These concerns are relevant for GLMs and HBS methods castin a sta-
tistical framework (Section 2.2). One common approach to account
for zeros is to add a small constant to all catch records before anal-
ysis (Maunder and Punt, 2004). Other approaches do not require
the analyst to alter the data, such as using an assumed probabil-
ity distribution that can include zero observations (e.g., Poisson or

negative binomial), or modeling the proportion of zero observa-
tions and the observations with positive catches separately (i.e.,
the delta-GLM approach; Aitchison, 1955; Lo et al., 1992; Maunder
and Punt, 2004; Stefansson, 1996; among others).

In this study, we simulated catch and effort data over a range of
specified biomass trajectories and patterns in vertical catchability.
We compared the indices estimated by statHBS and several formu-
lations of GLMs, including delta-GLMs, when fit to the simulated
data. The simulated catch data incorporated a trend in fishing effort
that is similar to that of the JLL in the Atlantic Ocean from 1956
to 2009. Previous studies have compared similar approaches to
standardizing indices of abundance (Bigelow and Maunder, 2007;
Goodyear, 2003; Maunder et al., 2006); however none of these
directly compared the commonly used models evaluated in this
analysis.

2. Methods
2.1. Data simulation

A simulation analysis is well suited for evaluating methods used
to estimate relative abundance, because the true pattern in abun-
dance is known. To simulate realistic catch data in this study, we
specified fishing effort to follow the temporal dynamics of the JLL
in the Atlantic Ocean. The change in target species and target fish-
ing depth exhibited by this fishery highlights the importance of
considering vertical habitats fished (e.g., depth) when estimating
relative abundance from these data. Therefore, the data simulation
propagated effort over a range of vertical habitats and specified
catchability to vary by habitat.

It is common practice in fisheries to assume that CPUE is pro-
portional to abundance (N) using the following general relationship
(Maunder and Punt, 2004):

CPUE = gN (1)

where q represents catchability. This fundamental relationship
served as the basis for data simulation, and by expanding it to incor-
porate a habitat-specific g, we simulated catch data per longline set
following:

G.s = [thEy,s,hByl es, eys~N(u=0, o0=2) (2)
h

where Cys is the catch in biomass for longline set s in year y, gy
refers to the catchability associated with vertical habitat h, E,
is the total effort associated with habitat h in set s in year y, By is
the exploitable biomass in year y, and &y is a random deviation
in catch for set s in year y. When generating random deviates, we
selected a value for o that enabled Cy,s to cover a realistic range as
compared to many HMS caught by the JLL in the Atlantic. Overall,
this simulation was relatively simple in that neither spatial struc-
ture nor population structure (size, age, sex, etc.) were considered;
however, these simplifying assumptions are consistent with recent
assessments of many HMS, such as Atlantic marlins, that used a
single-stock approach without population structure (ICCAT, 2006).

We simulated catch data over a period of 54 years (1956-2009),
a time-span during which the JLL operated continuously in the
Atlantic Ocean (ICCAT, 2006; Uozumi and Nakano, 1994). Biomass
trajectories were specified for this period by declaring an initial
biomass in the first year (B1gs6 = 500,000 t), with biomass in the fol-
lowing years determined as a random deviation from the previous
year. The random deviates were derived from a normal distribu-
tion with a mean specified in each simulation as a random uniform
number between —10,000 and 10,000 and a standard deviation of
10,000. Thus, the biomass trend followed a correlated random walk
that increased when the mean of the normal distribution was large
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Fig. 1. Annual effort for the Atlantic Japanese longline fishery specified in the catch
data simulation as total hooks and total sets per year (HKPY and SPY, respectively).
The number of sets per year is an underestimate of the true number of sets for this
fishery.

and positive, decreased when large and negative, and was stable
when near zero. Also, a lower threshold of 100 t was imposed on By
to prevent complete extirpation of the stock.

Fishing effort was specified as numbers of hooks, with one hook
representing one unit of effort. Annual effort (total hooks fished
per year) for the JLL in the Atlantic (Fig. 1) was determined using
publically available catch and effort data from the International
Commission for the Conservation of Atlantic Tunas (ICCAT).! The
number of longline sets per year (Fig. 1) was determined from these
catch and effort data as the total number of records per year, and
the number of hooks fished per longline set was then fixed for each
year at the number of hooks per year divided by the number of sets
per year. The total number of records in the ICCAT database may not
be an accurate representation of total sets per year, because each
record may represent more than one set, but we feel this approach
characterized the general pattern in sets per year for the JLL and
improved efficiency in our simulation by reducing the total number
of records (sets) generated.

To calculate the number of hooks from each set in each vertical
habitat category, we specified a fishing depth for each hook in a set
following catenary geometry (Bigelow et al., 2006; Yoshihara, 1951,
1954). These calculations required details pertaining to the config-
uration of longline gear over time, including the number of hooks
per basket (HPB; i.e., hooks between floats), lengths of the branch-
line (b; connects the hook to the mainline; also called gangion),
floatline (f; connects the float to the mainline), mainline between
floats (¢),and the angle (¢) between horizontal and tangential of the
mainline where it attaches to the floatline. The following equation
was used to specify hook depths:

dj=b+f+0.5£{(1+cot2<p)”2
. P 1/2
J 2
[(12(HPB+1)) ot 4 } ?

! http://www.iccat.int; data accessed September 2011.

where d; is the depth of hook j and j=1 to HPB for a given long-
line set. The number of HPB is often considered representative of
longline target fishing depth with smaller numbers (3-6) used in
shallower sets and larger numbers (10-20) used in deeper sets.
Corresponding to a shift in target species, the proportion of sets
with a large number of HPB increased throughout the 1980s (Serafy
et al., 2004; Uozumi, 2003; Ward and Hindmarsh, 2007; Yokawa
and Uozumi, 2001). This simulation followed the proportions out-
lined by Uozumi (2003) for HPB from 1975-1998. For years prior
to 1975, we used the proportion reported in 1975, and for years
after 1998, we used the proportion reported for 1998 (Fig. 2). The
angle ¢, although variable in practice, was set to 72°, a conven-
tional assumption in previous studies (Ward and Myers, 2006),
and the lengths of the longline components b and f increased
over time, following the historical trend in gear configurations
reported by Yokawa and Takuchi (2003) (Fig. 2). The value for £ was
determined by assuming a fixed distance between longline hooks
(45 m) throughout the simulation (i.e., £ =45[HPB+1]; Ward and
Hindmarsh, 2007). Finally, we reduced calculated hook depths by
25% to account for shoaling of the gear (Ward and Myers, 2006).
Actual hook depth is likely influenced by several dynamic pro-
cesses, and it has been shown that catenary algorithms do not
accurately estimate longline hook depth (Rice et al., 2007; Ward
and Myers, 2006). Thus, hook depths from our simulation were
reflective of a general pattern for the JLL over time, but are not
necessarily an accurate characterization of each set.

While it is important to have an understanding of hook depth,
the vertical distributions of HMS are likely governed by a physiolog-
ical response to the thermal properties of the water column (Brill
and Lutcavage, 2001). Because these properties are highly vari-
able over time and space, fishing depth does not necessarily reflect
habitat fished. Therefore, we declared 16 vertical habitats (h) in
which fishing effort could occur, each representing one degree devi-
ations from sea surface temperature (i.e., 0 to —15°C). To simulate
variability in the temperature at given hook depths, we randomly
assigned each simulated longline set one of three possible tem-
perature profile scenarios (i.e., relative temperature-at-depth):
shallow, intermediate, or deep thermocline depth (Fig. 3). Rela-
tive temperature-at-depth was specified deterministically in each
scenario to cover a range of possible temperature profiles. This
effectively assigned each hook within each set to one of the 16
habitat categories and incorporated random variability between
sets. Following the changes in longline gear configurations spec-
ified in the simulation, hook depths increased over time, which
corresponded with deeper (cooler) habitats being fished (Fig. 2).

To relate habitat-specific fishing effort to vulnerability for the
species being fished, we specified one of three potential scenar-
ios for vertical habitat catchability (Fig. 3) in each simulation. The
catchability in each habitat was influenced by relative temperature,
and these scenarios were meant to cover the conceivable range for
large pelagic fishes. While these organisms may spend the majority
of their time in a preferred thermal regime, their vertical movement
is likely a foraging strategy; therefore, the likelihood of taking a
baited hook may not be constant with depth, meaning the verti-
cal trend in catchability may not be directly related to the vertical
distribution of the species (Goodyear et al., 2003). To account for
uncertainty in vertical catchability, the three scenarios evaluated
included peaks in different thermal habitats, relative to sea surface
temperature (SST): surface, intermediate, and deep (Fig. 3). Each
scenario was specified to have the same total catchability over the
vertical habitats (g =2.5 x 10719), and g, was determined as a
proportion of total catchability allocated to each habitat using:

dh = GrotalPn h=0,...,-15 (4)

where in each scenario the proportion of total catchability for each
habitat (P,) was specified using the normal probability density
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Fig. 2. Gear dynamics for the Atlantic Japanese longline fishery specified in the catch data simulation, including branchline and floatline lengths (a), and total hooks per
basket (b) over time. Also, estimates of deepest habitats fished over time are presented (c). The total ranges (gray) and 95% confidence intervals (black) are presented for

hooks per basket and deepest habitats fished.

function (PDF). The parameters of the normal PDF (u, o) varied
between vertical catchability scenarios (=0, 3,5 and 0=1.2, 1.5,
2.5 for vertical catchability peaks at surface, intermediate, and deep
habitats, respectively) and P, was constrained to sum to one by
dividing the probability densities in each habitat by the sum of the
densities across h. We are unaware of any previously estimated pat-
terns in vertical catchability for the JLL. The trends specified here
allowed for the simulation of realistic catch data when following
the effort dynamics of the JLL.

We repeated this simulation iteratively over 50 randomly deter-
mined biomass trajectories and the three possible scenarios for
vertical catchability (Fig. 3) for a total of 150 simulated data sets.
This captured the effects of a broad range of possible relationships
between the abundance and vertical distribution of a large pelagic
fish as related to the dynamics of the JLL. Also, to incorporate zeros
in the catch data, sets with total catches less than 0.04 t were set to
zero.

2.2. Approaches to estimating relative abundance

The 150 simulated datasets were used to compare the accuracy
of indices of abundance estimated using three general approaches:
the nonlinear statHBS model, GLMs, including delta-lognormal

GLMs (delta-GLMs), and non-standardized ‘nominal’ CPUE (calcu-
lated as average annual CPUE). The statHBS model, as described by
Maunder et al. (2006), models catch data (C) from longline set i in
a nonlinear framework as:

G = Z]baseitz Ay ZEi,j

h ijeh

(5)

where {pqs is overall catchability, T; represents the index of abun-
dance over time t, A is the difference in catchability for habitat h,
and Ej; reflects the effort associated with hook j in set i (for this study
each hook represented one unit of effort, so E;; = 1). By multiplying
the total number of hooks in habitat h by the change in catchabil-
ity associated with that habitat (8;), effective effort is calculated
for each longline set, thereby directly accounting for changes in
vertical habitats exploited over time. The number of hooks per habi-
tat category was calculated using catenary algorithms and longline
configurations to determine hook depth, and the thermal proper-
ties of the water column to relate fishing depth to temperature
relative to the surface (categorized as one degree deviations from
SST). Estimates of hook depth and temperature-at-depth relied on
the values specified for gear configurations and temperature pro-
files in the simulation. The estimable parameters of this model are



P.D. Lynch et al. / Fisheries Research 125-126 (2012) 27-39 31

Relative temperature (°C)
-5 12 -9 -6 -3 O
| | | | | |

o - @
o
S _|
|
€
£ S
oy —
a §
[0]
=]
o
o _|
o)
|
—— Shallow
o - = = Intermediate

Catchability (107'°)

0 3 6
\ | |
O -
oW Al
2., 1
) "
S
«©
—_
[4)]
Q
£
)
[)]
=
©
T ©
o T
—— Shallow
m = = Intermediate

Fig. 3. Simulated ocean temperature profiles (a) and scenarios of vertical catchability (b). The temperature profiles were randomly assigned to simulated longline sets and
were meant to reflect shallow, intermediate, and deep thermocline depths. The catchability scenarios exhibited peaks in surface (shallow), intermediate, and deep waters.
The top of each panel represents the surface of the water with depth (a) and temperature (b) changing vertically.

Gpase and elements of the vectors I; and Aj. Overall catchability is
confounded with I; and Ay, so I in the first year is set to one, and
Ay, is constrained to sum to one. These parameters were estimated
by fitting this model to simulated C; by minimizing the following
negative log-likelihood function:

(In(C; + 8) — In(C; + 8))°
202

+Z(1n(ﬁh)-ln (%))2 6)
h

“In LOICG;) = Zln(a)-i—

where ; is the predicted catch for longline set i, 8 is a vector of
parameters, § is a small constant (1) used to prevent taking the log
of zero, and o is the estimated standard deviation (in log space).
The last term was included to improve convergence by penalizing
deviation from a uniform distribution under the constraint that A
must sum to one.

The GLM-based approach to standardizing CPUE data has been
used in stock assessments for many years (Maunder and Punt,
2004). A GLM can accommodate non-normal error structure by
relating the expected ith value of a response variable to a set of
predictor variables through a link function (McCullagh and Nelder,
1989; Nelder and Wedderburn, 1972). Since GLMs are linear

models, a linear response is assumed between the function of the
expected response and the explanatory variables as:

g(u) =1 B (7)

where g represents the link function, u; is the predicted response,
xiT is a transposed vector of explanatory variables including an
intercept and a categorical variable representing the time step
(at @ minimum), and B is a vector of parameters. For the GLM,
CPUE adjusted by a small number (1 x 10-3) rather than catch
(as with statHBS) was the response variable and lognormal error
structure was modeled by taking the natural logarithm of CPUE
(the identity link function was used). Annual estimates of relative
abundance and their respective standard errors were obtained as
back-transformed year means with an infinite series lognormal
bias correction following Lo et al. (1992).

The GLM is expanded in a delta-GLM, which models the prob-
ability of observing a zero catch as a function of the explanatory
variables, and then separately fits a GLM (with the same explana-
tory variables) to the non-zero catches (Aitchison, 1955; Lo et al.,
1992; Maunder and Punt, 2004; Stefansson, 1996; among others).
This approach is represented by:

w, y=0
PriY =y) = { (1 —w)f(y) otherwise

In Eq. (8), w is the probability of observing a zero for the response
variable (CPUE) and f(y) is a model of the mean of the non-zero

(8)
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CPUEs. For our analyses, the proportion of sets with positive CPUE
(1 —w) was modeled using a binomial GLM with a logit link func-
tion, and the positive CPUEs were modeled with a lognormal GLM
as previously described (though, without adjusting CPUE). Annual
probabilities of positive catches from the binomial GLM were the
back-transformed mean values for each year predicted when all
additional factors were set to the level representing the observed
mode (Maunder and Punt, 2004). Annual estimates of abundance
were then obtained by multiplying the probability of positive
observations for year y and the back-transformed bias corrected
year means from the lognormal GLM of positive catches. To cap-
ture the precision of the abundance estimates, standard errors were
calculated using the delta method (Lo et al., 1992; Seber, 1982).

It is important when evaluating the accuracy of GLMs and delta-
GLMs to consider which explanatory variables should be included
in the models. The year in which the catch occurred must be one
of the variables, because the output of interest is relative abun-
dance over time. The number of HPB is commonly used for longline
catch and effort data as a proxy for fishing depth, so this factor was
also considered in the analysis. Typically, when linear models are
used to estimate relative abundance from longline data, habitats
exploited are not directly considered, because information cannot
be summed over multiple habitats as with statHBS (Maunder et al.,
2006). However, catenary geometry and water column tempera-
ture profiles can be used to combine fishing and environmental
datainto a single variable to be incorporated directly into the GLMs.
For this type of variable, it is important to consider the degree of
detail since a factor with numerous levels can result in an over-
parameterized model. Thus, using the catenary algorithm (Eq. (3))
to estimate hook depths, and the simulated temperature profiles
to relate depth to temperature, we created a factor that represents
the largest change in temperature relative to SST (MaxAT) for each
longline set (i.e., deepest/coldest habitat fished per set).

To determine which predictor variables to include in the GLMs,
a series of GLMs were evaluated using a range of configurations for
the main effects of year, HPB, Max AT, and each possible first-order
interaction (following convention, interactions with year were
modeled as random effects). In practice, model selection tech-
niques, such as Akaike’s Information Criterion (AIC) or analyses
of residual deviance, are often employed when selecting a model
for generating a standardized index of abundance (Maunder
and Punt, 2004). However, in a simulation analysis, estimated
abundance trends can also be compared with the simulated ‘true’
pattern in abundance to determine model performance. Thus,
we fit each proposed GLM configuration to all simulated datasets
and recorded AIC, residual deviance, and a metric for model
accuracy (Section 2.3). Selection via AIC was based on AIC for
each model minus the minimum observed AIC (AAIC). The model
with AAIC=0 represented the ‘best’ model of those evaluated
(Burnham and Anderson, 2002). For our deviance analyses, we
calculated the percent of deviance explained by the stepwise
addition of each factor (Ortiz and Arocha, 2004), and if the percent
explained was less than the somewhat arbitrary cutoff value of
1%, then the model was rejected (Maunder and Punt, 2004). For
comparisons made between different random effects, models
were fitted using restricted maximum likelihood estimation,
while standard maximum likelihood estimation was used when
comparing different configurations of fixed effects (Zuur et al.,
2009). We conducted the analyses of model configurations using In
(CPUE +1 x 10~3)as aresponse variable, then repeated the analyses
using only the records with positive CPUEs (i.e., In(CPUE >0) was
the response). We considered four configurations of fixed effects
(FE1=Year, FE2=Year+MaxAT, FE3=Year+MaxAT+HPB, and
FE4 = Year + MaxAT+HPB + MaxAT x HPB), and fit the candidate
models to the 150 simulated datasets. To summarize the selection
metrics across all scenarios, we recorded their median values

and calculated the percent of times each model structure would
have been selected following the three selection approaches. The
summary statistics for model fit and model accuracy were then
synthesized to select a single GLM structure for all simulated
datasets. We did not allow the model structure to change during
the simulations, because we did not want to introduce model
selection as an additional level in our evaluations. The overall
comparisons were then confined to five approaches: statHBS, a
GLM and delta-GLM with the selected model structure, a delta-
GLM without the MaxAT factor (delta-GLM2) for evaluation of
this unique variable, and nominal CPUE, because many studies
(particularly meta-analyses) have used this approach to describe
trends in abundance (e.g., Myers and Worm, 2003).

2.3. Model evaluation and comparison

The GLMs and statHBS model were fit to different response vari-
ables (CPUE and catch, respectively); therefore, common statistical
comparisons of model fit (e.g., AIC) could not be used to compare
these models. However, this does not represent a substantial draw-
back, because these statistical metrics are typically concerned with
balancing model fit and parsimony for a given dataset, and the most
important aspect in this evaluation is the accuracy of the estimated
trend in annual biomass. Because estimated trends were treated as
relative indices, the estimates from the various models were scaled
for comparison with the associated ‘true’ biomass. Model compar-
isons were based on the annual percent difference in simulation
scenario x for model m in year y (% Dxmy) between true biomass
and estimated biomass calculated as:

_ 100|By,y — (ix,m,y/jx,m,y)gx,y\

% Dy.m.y = 5 9
X,y

where L,m,y refers to the index of abundance estimated in simula-
tion x for model min yeary.To facilitate the comparison of methods,
the median of the annual percent differences (MPD) was calculated
for each model m to serve as a single metric of accuracy for each
simulated time series x and the standard deviation (SDPD) was cal-
culated to characterize the variability of % Dy, across years. Our
performance metrics compared the absolute value (magnitude) of
the relative errors. To evaluate the pattern (directionality) in the
errors, we analyzed overlaid plots of ‘true’ and estimated biomass
across all scenarios.

2.4. Sensitivity

The habitat variables specified in the GLMs and the statHBS
model relied on estimates of hook depth for each longline set.
By using the conditions described in the data simulation, these
dynamics were known without error in the analyses. However,
hook depth is notoriously difficult to estimate with accuracy (Rice
et al,, 2007; Ward and Myers, 2006), and uncertainty surrounding
inputs for HBS methods have been shown to affect the accuracy of
these approaches (Goodyear, 2003). Thus, we conducted a sensi-
tivity analysis with a single simulated data set, assuming declining
biomass over time and a peak in vertical catchability in surface
waters. This scenario potentially reflects the vertical distribution
and biomass trajectory of several HMS in the Atlantic Ocean. The
statHBS model and a delta-GLM including the MaxAT factor were
then fit to the data assuming different degrees of uncertainty
regarding estimated hook depth. Because estimates of hook depth
may be biased, three scenarios were considered in the sensitivity
analysis (hook depths always underestimated, always overesti-
mated, or randomly over/underestimated in each longline set), and
hook depth errors were specified over a range of 5-50% (incre-
mented by 5%) for each scenario. The model evaluation metrics
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(Section 2.3) were then compared across the range of errors speci-
fied.

2.5. Implementation

With the exception of the statHBS model, the simulation and
analyses were executed using the statistical programming language
R (R Development Core Team, 2011). Due to increased model com-
plexity, statHBS was implemented using AD Model Builder (ADMB
Project, 2011), which was called from R.

3. Results

The simulation model generated 150 separate catch and effort
time series from 50 random biomass trends, each repeated three
times to evaluate different profiles of vertical catchability. Of the
150 simulations, we highlighted nine as representative of the range
of possibilities for patterns in relative abundance and vertical catch-
ability (Fig. 4). When catchability was highest in surface waters
(Fig. 4a-c), simulated catch peaked early in the time series, but
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then decreased as the fishery began targeting deeper habitats.
When catchability was highest in intermediate and deeper habitats
(Fig. 4d-i), simulated catches tracked the true trend in abundance
more closely. Also, because one component of this study is the treat-
ment of records with a total catch equal to zero (i.e., either add a
constant or use the delta approach), we summarized the propor-
tion of zeros across all simulation scenarios (minimum, mean, and
maximum proportions were 0.02, 0.11, and 0.41, respectively). The
highest proportions of zero catches occurred when catchability was
simulated to peakin surface waters or when biomass was simulated
to decrease over time.

Selection of a model structure for the GLMs and delta-GLMs
was not straightforward, because the three selection metrics did
not always lead to the same conclusion (Table 1). The AIC approach
clearly favored FE3, while the deviance analysis selected FE2 and
FE4 most frequently. However, the accuracy of the models is their
most important attribute, and MPD indicated that FE3 and FE4
exhibited the greatest accuracy, with FE4 selected slightly more
often, and a lower overall MPD for FE3. In fact, the AIC approach
selected the most accurate configuration in only 19.3% of the
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in surface (a-c), intermediate (d-f), or deep waters (g-i), and the simulated ‘true’ biomass trajectory (scaled to total catch) was either decreasing (a, d, and g), stable (b, e,

and h), or increasing (c, f, and i) over time.
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Table 1

Summary of linear model selection metrics for different fixed effect structures. The four hypothesized model structures were evaluated when fit to all catch data adjusted by
a constant, and when fit to the positive catch records only. Median values across all 150 simulated datasets were presented for the change in Akaike’s Information Criterion
from the minimum value (AAIC), the percent of the total residual deviation explained by the stepwise addition of each factor (% total dev.), and the median percent difference
between estimated and true biomass (MPD). Also presented are the percent of times each model structure was selected by each corresponding selection metric (% S).

Model structure AAIC % total dev. MPD % Saic % Spev % SmpD
Response: log(CPUE+1 x 10-3)

Year 1055.3 73.2 339 0.0 0.0 12.7
Year + MaxAT 21.7 24.6 12.2 193 473 10.7
Year + MaxAT+HPB 0.0 1.0 9.7 62.0 5.3 27.3
Year + MaxAT+HPB+MaxAT x HPB 29.1 1.5 113 18.7 473 32.0
Response: log(CPUE >0)

Year 762.1 75.6 35.0 0.0 0.0 8.7
Year + MaxAT 10.8 21.2 9.1 333 42.7 253
Year + MaxAT+HPB 0.0 1.2 10.1 58.0 8.0 29.3
Year + MaxAT+HPB + MaxAT x HPB 37.5 1.9 111 8.7 49.3 30.0

scenarios, and the deviance analysis led to the most accurate
model in only 10.7% of the scenarios. We decided to use FE3
rather than FE4 throughout the simulation runs, because it is
a more parsimonious model, and also because the interaction
term caused convergence issues with the delta-GLM. We did not
observe improved accuracy when the model contained random
effects to describe interactions with the Year coefficient; thus,
these interactions were not included in the analyses.

Indices of abundance were estimated for each simulated data
set following five approaches (delta-GLM, delta-GLM2, GLM, nom-
inal, and statHBS) and evaluation metrics were calculated for
each approach. The overall comparison of MPD for all simulations
(Fig. 5a) suggests that the delta-GLM that included detailed vertical
habitat information provided the most accurate estimates of rela-
tive abundance (i.e., the lowest overall median of MPD), though
the variability of this metric spanned a slightly larger range than
that for GLM. When accounting for different patterns in vertical
catchability across all biomass trends (Fig. 6a—c), delta-GLM was
most accurate, except when vertical catchability peaked in surface
waters (Fig. 6a). Comparison of MPD over different biomass tra-
jectories across all catchability scenarios (Fig. 6d-f) suggested that
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Fig. 5. Box and whisker plots of performance metrics, including median percent
difference between estimated biomass and true biomass for a simulated dataset
(a), and standard deviation (SD) of the percent differences (b) for five approaches
to estimating an index of abundance. The solid line reflects the median, the box
encompasses the interquartile range, the whiskers extend to the extreme values,
and circles reflect potential outliers.

delta-GLM was most accurate except when biomass increased over
time (Fig. 6f). Overall variability in the accuracy of the estimates was
lowest for delta-GLM2 (Fig. 5b), which exhibited the lowest SDPD
when vertical catchability peaked in deep waters (Fig. 6i) and when
biomass increased over time (Fig. 61). However, in general, SDPD
was relatively consistent across all approaches except when using
nominal CPUE.

The nine highlighted simulation scenarios were used to visu-
ally evaluate estimated trends in abundance as compared to ‘true’
abundance trends (Fig. 7). The patterns in these plots were consis-
tent across all simulated scenarios, and suggest that when vertical
catchability peaked at the surface (Fig. 7a—c) all approaches over-
estimated abundance early in the time series, but underestimated
abundance when catches declined with changes in fishing strategy.
These patterns were exacerbated for less accurate approaches, par-
ticularly nominal CPUE. For scenarios where vertical catchability
peaked in intermediate and deep waters, there were no consistent
patterns in the errors, irrespective of biomass trajectory (Fig. 7d-i).

Finally, the sensitivity analysis indicated that for the scenario
evaluated, the statHBS model was sensitive to hook depth uncer-
tainty, yet the delta-GLM with detailed habitat information was
not particularly sensitive to this error (Fig. 8). Model evaluation
metrics for statHBS and delta-GLM were compared with baseline
metrics calculated assuming no error in estimated hook depth as
well as delta-GLM2 which did not include the MaxAT factor. The
accuracy of statHBS was compromised when hook depths were
always underestimated or randomly over/underestimated. When
hook depths were always overestimated, accuracy did not decline
until hook depth estimates were at least 30% different from actual
fishing depths (Fig. 8a). For the delta-GLM, accuracy was not sub-
stantially reduced as hook depth uncertainty increased; though
when hook depths were always overestimated, a relatively small
amount of error caused delta-GLM to be less accurate than delta-
GLM2, but larger errors in estimated hook depths actually improved
accuracy (Fig. 8b). The statHBS model also appeared more sensitive
than delta-GLM to hook depth uncertainty in terms of SDPD (Fig. 8¢
and d). For the delta-GLM, SDPD was relatively consistent across the
range of hook depth uncertainty for all scenarios.

4. Discussion

There are numerous challenges surrounding the assessment and
management of HMS (Lynch et al,, 2011). Among these include
a lack of fishery-independent scientific research, resulting in a
reliance on fishery catch and effort data for making inferences
about population dynamics. In this study, we evaluated common
approaches to estimating indices of abundance for HMS from long-
line fishery data when the fishery exhibited a change in target
fishing depth. This shift in the vertical distribution of effort is a
common feature of many pelagic longline operations to which HMS
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are susceptible (Majkowski, 2007). Thus, we evaluated models that
accounted for habitats exploited, such as statHBS and GLMs that
included a unique habitat factor (MaxAT). By including this habi-
tat variable, we essentially created a bridge between statHBS and
GLM approaches, because under both methods, estimates of ver-
tical habitats exploited are derived by relating estimated longline
hook depth to surrounding environmental conditions. Our over-
all conclusion from this study is that the most accurate approach
was a delta-GLM that included the Max AT habitat factor. Including
this information improved the performance of the linear models
tested, and to our knowledge, this type of detailed habitat fac-
tor has not previously been used for obtaining annual estimates
of relative abundance from longline data. However, delta-GLM did
not exhibit the lowest variability in the errors of the approaches
evaluated. This suggests that while delta-GLM may provide more
accurate estimates of abundance across a time series, the magni-
tude of the error is less consistent than that for other methods. Still,
given that SDPD does not differ substantially across approaches, we

maintain that delta-GLM is the preferred approach on the basis of
MPD. It should be noted that we evaluated the base form of the
statHBS model as described by Maunder et al. (2006). We did not
consider alternative formulations; however, Maunder et al. (2006)
suggested several that may improve the accuracy of the model.
While delta-GLM provided the most accurate estimates of abun-
dance overall, other approaches provided the lowest MPD in
several scenarios. For instance, when vertical catchability peaked
at the surface, GLM and statHBS were generally more accurate
than delta-GLM. However, it is important to recognize that under
this catchability scenario all models provided relatively inaccurate
estimates of abundance (Fig. 6a), even though the fishery and envi-
ronmental dataincluded in the analyses were known without error.
A potential explanation for this phenomenon is that the shift by the
fishery to deeper target habitats caused catches to decline over time
to a level where there was no longer enough information to esti-
mate annual biomasses with accuracy. This emphasizes the point
that fisheries do not always sample populations effectively; thus,
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Fig.7. Simulated ‘true’ biomass plotted against annual biomass from five approaches to estimating an index of abundance. Results are highlighted for nine selected simulation
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it is risky to rely on fishery-dependent data for making inferences
about population dynamics, even when changes in fishing strategy
are properly considered.

When indices of abundance fail to capture stock dynamics, it
is important to determine if the estimated trends exhibit hyper-
stability (i.e., abundance decreases more rapidly than the index)
or hyperdepletion (the index decreases more rapidly than abun-
dance) (Hilborn and Walters, 1992). For scenarios with a peak in
vertical catchability at the surface, we observed evidence of hyper-
depletion in estimated trends in abundance (Fig. 7a-c). If these
scenarios captured true patterns in vertical catchability for bycatch
species, then our results support the assertion by Uozumi (2003)
that assessments of bycatch HMS in the Atlantic have been overly
pessimistic.

In general, the delta approach did not result in substantial
improvements over the traditional GLM. This suggests that the
treatment of zeros (i.e., longline sets with total catch equal to
zero) constitutes another important aspect of our evaluations. The
delta approach directly accounts for zero observations, and for
statHBS and GLM the data are adjusted to accommodate zeros.

Therefore, when the proportion of zero observations is relatively
high, the delta approach would be expected to outperform meth-
ods that alter the data; however, statHBS and GLM performed
better than delta-GLM in the scenario that resulted in the high-
est proportions of zeros (surface peak in catchability). Because
the treatment of zeros was not the primary focus of our analyses,
this unexpected result warrants further evaluation of the influ-
ence of zero observations on methods used to estimate indices
of abundance. Additional studies should also consider the choice
of assumed error distribution, since discrete distributions (e.g.,
Poisson, negative binomial) would not require the data to be
altered.

Another aspect of our study that could benefit from additional
research is the application of model selection criteria when gen-
erating indices of abundance. For our simulated scenarios and
model configurations, neither AIC nor deviance analysis were reli-
able for predicting the model that provided the most accurate
index of abundance. Further studies are necessary, because these
approaches are commonly used when selecting models to stan-
dardize CPUE. Alternative selection approaches to consider include



P.D. Lynch et al. / Fisheries Research 125-126 (2012) 27-39 37

& - (a) statHBS & - (b) delta-GLM
o _] o _|
o5 -~ -— - ¢
2 ~ . - -
[0} .
g o | y o |
o ’ P=
£ ’
© o _| o _|
-6\0_ [(e] o
c
o]
3 8- 3 -
=
o TR e e T e e = P e s s et vty
< <t - - . - »*
o _| o _|
@ [ep}
T T T T T T T T T T
10 20 30 40 50 10 20 30 40 50
(=] o
(e} [{e]
(c) statHBS (d) delta-GLM | — - Random
Overestimated
Underestimated
2 2 - —— No error
@ --- delta-GLM2
e
o
2 o . o _|
N <t <t
©
2
)
® o5 __,__.‘_.-..-—__.4.-"“"- (o
@ - 2 e e i iy =, e W o
o _| o _|
[aV] (o]

10 20 30 40 50

Hook depth % error

10 20 30 40 50

Hook depth % error

Fig. 8. Sensitivity plots for statHBS and a delta-GLM with an effect for habitats fished. These plots characterize the effect of hook depth uncertainty on the median percent
difference between estimated and simulated biomass (a and b), and the standard deviation (SD) of the percent differences (c and d). The percent of error in estimated hook
depth was applied as either overestimated (blue), underestimated (green), or with random directionality (black). The solid red line represents the result with no error in
estimated hook depth, and the dashed line represents the result for a delta-GLM without an effect for habitats fished.

cross-validation (Maunder and Punt, 2004) and consistent infor-
mation criteria (Shono, 2005).

Our catch and effort simulation was based on the dynamics
of the Japanese Atlantic longline fishery, partly because this fish-
ery has been recommended in this context (ICCAT, 2004), but also
because it captures a scenario when changes in the vertical dis-
tribution of fishing effort may have affected catchability. Because
fisheries continually evolve in response to advances in technology
and shifts in the global demand for resources, dynamic catch-
ability is likely a common feature underlying the catch data of
many species, especially HMS caught by longline fisheries that
have changed targeting practices. Thus, the data simulated in
this study incorporated a shift in the distribution of fishing effort
across vertical habitats to reflect a change in target species. While
this important feature was incorporated, the simulation did not
consider other potentially important dynamics, such as the geo-
graphical distribution of fishing effort over time, or variability due
to size, age, or sex in the fish population. In some cases, includ-
ing such detail may be essential. For instance, Prince et al. (2010)
demonstrated that catchability of bycatch HMS may be higher

inside than outside the oxygen minimum zone of the eastern trop-
ical Atlantic. Standardization of CPUE with GLMs could account for
this by including an appropriately defined area factor in the lin-
ear model, whereas statHBS could be expanded to include a GLM
component with this area factor (Maunder et al., 2006).

While the incorporation of vertical habitats fished improved
estimates of relative abundance, its main practical limitation is the
ability to estimate hook depths with accuracy. Catenary algorithms
are typically used to generate static estimates of hook depth for an
entire longline set, yet numerous factors (wind, hydrodynamics,
behavior of hooked organisms, etc.) can cause substantial devia-
tions from predicted depth for a given hook position both within
and between sets (Bigelow et al., 2006; Rice et al., 2007; Ward
and Myers, 2006). By conducting a sensitivity analysis over a range
of errors in estimated hook depths, we quantified the effects of
this uncertainty on the performance of statHBS and a delta-GLM.
The high sensitivity of statHBS is perhaps due to the reliance of
this method on a detailed characterization of hook depth, whereas
the less sensitive delta-GLM used a simple categorical variable
to describe vertical habitats fished. Although the MaxAT variable
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provided a simplistic depiction of habitats fished, its inclusion sub-
stantially improved the accuracy of the model (Table 1). Therefore,
itis interesting that this influential factor was not particularly sen-
sitive to error. In general, the sensitivity analysis provided a simple
characterization of the influence of hook depth uncertainty. To pro-
vide a baseline evaluation, we selected a single simulated scenario
that potentially reflects the vertical distribution and biomass tra-
jectory of many HMS in the Atlantic Ocean (i.e., surface peak in
catchability and declining biomass over time). For instance, stock
assessments of Atlantic marlins indicated that their biomasses
are in decline (ICCAT, 2006), and their vertical distributions have
been characterized as surface oriented with occasional deep dives
(Goodyear et al., 2008; Graves et al., 2002; Horodysky et al., 2007;
Kerstetter et al., 2003; Prince et al., 2010). More comprehensive
characterizations of hook depth uncertainty are warranted, and we
encourage additional analyses that consider a variety of simulated
scenarios. Additionally, our evaluations were conducted assuming
no error in the catch data, gear dynamics, or oceanographic condi-
tions. In practice there may be uncertainties surrounding each of
these inputs, and a characterization of their effects would be useful.
For example, temperature profiles for each longline set would ordi-
narily be obtained from a global ocean database, which may require
interpolation, and therefore may not reflect the true temperature
profile for each set.

In addition to expanding the evaluation of the effects of hook
depth uncertainty, the results of this study highlight the importance
of several areas of research. For instance, the development of a more
sophisticated approach to modeling longline gear behavior as a
function of environmental conditions could be useful in these appli-
cations. Accordingly, increasing the detail of fishery data reporting
to include catch by hook position and corresponding environ-
mental conditions could foster a better understanding of catches
by habitat. Additionally, we defined vertical habitat categories
as 1°C deviations from SST, but decisions about how to parti-
tion habitat may influence estimates of abundance that include
this information. This emphasizes the importance of continued
research on behavior, physiology, and habitat use of fishes, and
in future analyses, model performance may be further improved
using model selection (e.g., AIC) to determine an appropriate degree
of detail in the habitat factor. However, based on the results
of our selection of a fixed structure for the linear models, cau-
tion should be exercised when using traditional model selection
metrics for CPUE standardization. Furthermore, the methods eval-
uated are best suited for estimating historical trends in abundance,
yet predictions about future patterns are also important for fish-
eries management. In reality, complex dynamics likely govern
true abundance trends, and most approaches for estimating rel-
ative abundance do not incorporate these relationships. However,
nonlinear forecasting may be a promising approach for predict-
ing future abundance when the governing equations are unknown
(Glaser et al., 2011).

The focus of our study was on estimating relative abundance in
the presence of changes in the vertical distribution of fishing effort,
but a change in the geographical distribution of effort is an equally
important consideration (Walters, 2003). Fishery-dependent data
provide information from areas fished, which typically repre-
sent areas of high profitability. Without accounting for abundance
trends in areas that were not fished, there is an implicit assumption
that CPUE trends in areas fished are reflective of trends in areas
that were not fished. In many cases this assumption may not be
valid, and it has been shown to bias estimates of relative abundance
(Campbell, 2004; Carruthers et al., 2010; Walters, 2003). To account
for this source of bias in a CPUE standardization context, Carruthers
etal.(2011)described a GLM approach to CPUE standardization that
includes data imputation in unfished spatial cells. Their approach
could easily be adapted to account for vertical habitats as described

herein, thereby directly addressing effects on catchability due to
changes in the distribution of effort in three dimensions.

Since the description of HBS by Hinton and Nakano (1996), the
choice between using HBS or a GLM approach to estimating the
relative abundance of HMS has been controversial (Bigelow and
Maunder, 2007; Goodyear, 2003; Goodyear et al., 2003; Maunder
et al., 2006; Prince and Goodyear, 2006; Ward and Myers, 2005).
Debate over this choice could be expected given the potential influ-
ence on assessment results (e.g., Uozumi, 2003) and the fact that
regulations aimed at conserving HMS affect highly valued inter-
national fisheries. Nevertheless, the controversy emphasizes the
importance of comparing and evaluating these methods, and the
results of our study should be interpreted in the context of previ-
ous research (i.e., Bigelow and Maunder, 2007; Goodyear, 2003).
In a simulation study, Goodyear (2003) compared GLM with the
original deterministic formulation of HBS, and concluded that both
methods can be accurate, but HBS can be strongly biased when
input assumptions were erroneous. Bigelow and Maunder (2007)
however, modeled catchrates using statHBS and GLM when applied
to real fisheries data and found that statHBS fit best to the data,
though the focus of their conclusions was on the importance of
considering vertical habitat, rather than depth, in CPUE standard-
ization for HMS. Recognizing the significance of this conclusion, we
decided to evaluate not only statHBS, but also GLMs that consider
habitat. Furthermore, given that delta-GLMs are a popular approach
to CPUE standardization, we thought it was important to evalu-
ate this method of dealing with zeros in the catch data. Thus, this
study is the first to compare delta-GLMs and statHBS in a simulation
context. In agreement with previous work, we conclude that the
incorporation of vertical habitats exploited is important when esti-
mating relative abundance of HMS from fishery-dependent data,
specifically when there has been contrast in the habitats exploited
over time. We further recommend that this information be included
via delta-GLM rather than statHBS, unless there is substantial con-
fidence in estimates of habitats exploited.
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