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Background 

Recruitment and other population processes of groundfish in the Gulf of Alaska (GOA) and 

Bering Sea-Aleutian Islands (BSAI) have well-documented linkages to indices of environmental 

forcing and variability, such as the El Niño Southern Oscillation (ENSO), the Pacific Decadal 

Oscillation (PDO), sea surface temperature and height, and sea ice extent (e.g. Hollowed et al. 

1987, Bailey and Picquelle 2002, Clark and Hare 2002, Mueter et al. 2007, Doyle et al. 2009, 

Hunt et al. 2011, Vert Pre et al. 2013, Stachura et al. 2014). Synchrony in recruitment trends 

among species with similar early life history traits suggests environmental conditions can 

influence recruitment for many species simultaneously, and has been found among groups of 

species in the GOA, BSAI, and elsewhere (e.g. Hollowed et al. 1987, Doyle et al. 2009, Link et 

al. 2009). Stachura et al. (2014) identified synchrony in recruitment among GOA flatfish species 

(including Pacific halibut) that move from the slope to nursery grounds on the shelf as larvae; the 

study linked recruitment of these flatfish to an environmental index heavily driven by sea surface 

height (SSH). 

The effects of a warming climate have been measured in both the GOA and BSAI 

ecosystems. Temperatures on the southeastern Bering Sea shelf increased by approximately 3 

degrees from 1997-2007 (Stabeno et al. 2007), accompanied by declines in the extent of sea ice, 

changes in the timing of sea ice retreat, and changes in the timing and species composition of 

zooplankton availability (Hunt et al. 2011). To understand the possible consequences of climate 

effects on fish productivity, population dynamics, and fisheries, we need effective modeling and 

statistical tools to infer and select among plausible relationships between population processes 

and environmental conditions. These models can then be used to forecast population dynamics 

under future climate change and harvesting scenarios (Hollowed et al. 2009). 

Integrated statistical catch-at-age (SCA) models are powerful tools for modeling fish 

population dynamics that can be fit to multiple data types simultaneously (Deriso et al. 1985, 

Maunder and Punt 2013). Fitted SCA models can be used to forecast population dynamics under 

future environmental and fishing scenarios. Previous studies have used SCA models to address 

the effects of recruitment-environment linkages on the performance of assessments and 

management strategies (e.g. Maunder and Watters 2003, Haltuch and Punt 2011, Punt et al. 

2014). Studies have also used estimated annual recruitment deviations from SCA models to 

evaluate recruitment-environment linkages by fitting stock-recruitment relationships that 

incorporate environmental variables to these estimated recruitment deviations (Wilderbuer et al. 

2013). Previous studies have not, however, addressed how best to choose among competing SCA 

models with different functional relationships between recruitment and the environment. 

Model selection methods are not commonly used to choose among competing SCA models 

(exceptions include Wilberg and Bence 2008, Linton and Bence 2011, Maunder and Harley 

2011). This is because for commonly applied model selection tools (e.g. Akaike’s Information 

Criterion, AIC, Akaike 1974), the “effective” number of parameters cannot be clearly specified. 

Recent studies have shown potential for the analysis of retrospective patterns, cross-validation, 

and the Deviance Information Criterion (DIC) to select among competing SCA models that 

differed in their representation of selectivity or catchability (Wilberg and Bence 2008, Linton 

and Bence 2011, Maunder and Harley 2011, Martell and Stewart 2014).  

Although recruitment-environment linkages could be modeled outside of an SCA framework 

where model selection is more commonly applied, there are several advantages to using SCA 

models. First, a broader scope of analyses is possible within an SCA model. Simulation studies 
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can be easily expanded to consider relationships between environmental conditions and 

catchability, growth, and natural mortality. These multiple linkages can then be simultaneously 

included in forecasts along with harvest policy evaluations. Second, estimation uncertainty can 

be propagated easily in projections, accounting for the sources of error attributed to each data 

component. Third, multiple data sources included within an SCA model may contain information 

about recruitment-environment linkages. Non-integrated approaches that use estimated 

recruitment deviations from an SCA model may overstate accuracy, ignore covariance structure, 

and imply that the assessment model used to estimate recruitment is mis-specified. An SCA 

model that includes a recruitment-environment linkage and is fit to the same data as an 

equivalent model that ignores such linkages may estimate a different recruitment time-series, as 

well as different values for other model parameters and derived quantities (such as spawning 

biomass). This may affect conclusions about the recruitment-environment linkage (even 

assuming the same functional form when using an integrated and non-integrated approach) and 

impact model projections. Fitting SCA models with and without recruitment-environment 

linkages may be a better way to learn about those linkages than non-integrated approaches, given 

that it is possible to correctly select among competing SCA models. Incorporating recruitment-

environment relationships into SCA models and simulation-testing the ability of model selection 

tools to choose among those models will help to identify robust approaches for improving 

methods for forecasting fish population dynamics under plausible future climate conditions. 

An important role of forecasting population dynamics is to evaluate the potential for 

alternative harvest policies to meet fishery and management objectives, given uncertainty about 

both population dynamics (Cooke 1999) and future environmental conditions (A’mar et al. 2009, 

Walters and Parma 1996). A’mar (2009) and Walters and Parma (1996) showed that some 

harvest policies may be more robust to future environmental uncertainties than others. Likewise, 

forecasts under some harvest policies may be less sensitive to mis-specification of recruitment-

environment relationships than others. 

In this study, we will use simulations to develop stock assessment models that 

incorporate hypothesized relationships between recruitment and environmental indices 

and we will evaluate the accuracy of model selection tools to distinguish among these 

relationships. Results from the simulation study will inform best practices for including 

recruitment-environment linkages in a suite of stock assessment-based forecasts for GOA 

flatfish, including Pacific halibut. Our objectives are (1) to improve forecasts of fish 

population dynamics given hypotheses about future climate change and fishing by 

identifying robust tools for model selection, and (2) to evaluate the potential for alternative 

harvest policies to meet management objectives over a range of future climate scenarios, 

using forecasting models that incorporate correctly- and mis-specified linkages between 

population dynamics and environmental conditions. 

Approach 

We will investigate methods for including recruitment-environment relationships in SCA 

models for life history types relevant to Alaska flatfish species, and evaluate the ability of a suite 

of model selection tools to choose the correct models using Monte-Carlo simulations. We will 

apply results from the simulation study to model recruitment-environment linkages for a suite of 

GOA flatfish species, including Pacific halibut, that exhibit planktonic larval transport from the 

slope to nursery grounds on the shelf (“cross-shelf transport”) and appear to exhibit positively 

correlated recruitment with an environmental index related to SSH (Stachura et al. 2014). 
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Stachura et al. (2014) developed environmental indices using PCA to group correlated 

environmental variables into uncorrelated principal components. This study will build on 

Stachura et al. (2014) by using the same environmental indices found to be related to 

synchronous recruitment patterns among “cross-shelf transport” flatfish to model recruitment-

environment linkages in flatfish assessment models. 

Next, we will evaluate the importance of selecting SCA models that specify recruitment-

environment linkages correctly when conducting forecasts under a range of harvest policies and 

future climate scenarios. Forecasts will be made for a suite of Intergovernmental Panel on 

Climate Change (IPCC) climate scenarios under current North Pacific Fishery Management 

Council (NPFMC) and International Pacific Halibut Commission (IPHC) harvest policies. The 

impact of modeling a correctly- or mis-specified recruitment-environment linkage on the results 

of SCA forecasts will be evaluated for each harvest policy and climate scenario.  

Modeling recruitment-environment linkages and evaluating methods for selecting among models 

Monte-Carlo simulation includes the following steps: (i) developing an operating model (OM) 

to represent the true state of the population, (ii) simulating the process of gathering data from the 

population with observation error, (iii) conducting a stock assessment on the data generated in 

step (ii), (iv) evaluating the ability of the stock assessment to estimate relevant quantities such as 

spawning biomass by comparing estimated values to corresponding true values from the OM, 

and (v) repeating steps (i)–(iv) many times to account for observation and process error. This 

project will include an additional step in which model selection criteria will be applied to the 

stock assessments. 

Stock Synthesis (SS3) is a flexible SCA modeling platform that is frequently used to conduct 

stock assessments (Methot and Wetzel 2013). SS3 will be used as an OM and an assessment 

model using the R package ss3sim (Anderson et al. 2014a,b; CRM is a co-author). The package 

ss3sim is already programmed to conduct Monte-Carlo simulations to evaluate fisheries stock 

assessments. A minimal amount of programming will be required to update ss3sim such that an 

OM and a stock assessment can include a recruitment-environment linkage. The SS3 framework 

allows the user to specify relationships between an environmental index and a population 

parameter (Methot and Wetzel 2013). We will evaluate models with a multiplicative 

environmental linkage to either (a) the parameter determining mean unfished recruitment 

(Stewart and Martell 2014), (b) the parameter determining stock productivity (steepness), or (c) 

the annual recruitment deviations (Schirripa et al. 2009). These methods assume that 

environmental conditions are known without error.  We will also evaluate an alternative method 

that includes an environmental index as a data source linked to recruitment through a likelihood 

component (Schirripa et al. 2009); this method accounts for observation error associated with the 

environmental index. 

The model selection tools that will be evaluated are: DIC, Mohn’s retrospective statistic, and 

hold-out cross-validation. Each of these tools has performed well for selecting the model that 

produces the least biased estimate of biomass among SCA models with differing assumptions 

about selectivity (Maunder & Harley 2011, Linton & Bence 2010) or catchability (Wilberg & 

Bence 2008). These three model selection tools have different selection criteria. The DIC 

balances between model fit and the effective number of parameters and requires integration of 

the Bayesian posterior distribution (Spiegelhalter et al. 2002). Cross-validation methods arise 

from non-parametric statistics and involve fitting models using a subset of the data and 

evaluating predictions for the data that were omitted (Maunder and Harley 2011). Mohn’s 
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retrospective statistic arises from stock assessment problems and is designed to evaluate the 

magnitude of retrospective bias (Mohn 1999). 

Four sets of scenarios will be considered, each of which are predicted to influence the ability 

of assessments to estimate quantities of interest and the ability of model selection methods to 

choose the correct model. First, the consequences of including (or not) a recruitment-

environment linkage in the assessment model when such linkages do (or do not) exist in the OM 

will be evaluated. Second, data quality and quantity scenarios will be modeled because the 

amount of age-composition data and characteristics of ageing error are known to influence 

estimates of recruitment. Simulations will be conducted for three data quality categories that are 

characteristic of the available data for Alaska groundfish species. Third, fishing and biomass 

history influence the amount of information in the data on productivity and other parameters. 

Three biomass histories will be considered: a “one-way trip” where biomass declines 

consistently over time, a constant biomass scenario, and a scenario where biomass initially 

declines and then recovers. Lastly, multiple assumptions about the characteristics of 

environmental indices will be modeled. Stachura et al. (2014) used PCA analysis to group 

environmental indices in the GOA and BSAI into uncorrelated principle components that were 

then used to relate recruitment to environmental conditions. We will use the variance and 

autocorrelation properties of the environmental indices in Stachura et al. (2014) to develop test 

environmental indices. Simulations will test the implications of modeling the wrong 

environmental index, and also the effect of the percent of recruitment variation explained by an 

environmental index in the OM.   

Forecasting to explore the performance of harvest policies under future climate trajectories and 

alternative models of recruitment-environment linkages 

The Monte-Carlo simulations described above will create stock assessments fitted to data 

generated from the OM that (1) correctly or incorrectly specify an existing recruitment-

environment linkage, (2) incorrectly specify a recruitment-environment linkage where none 

exists, or (3) incorrectly specify that there is not a recruitment-environment linkage when one, in 

fact, exists. Forecasts will be conducted using the population dynamics of some of these stock 

assessments for a halibut-like and a contrasting flatfish-like species and data scenario, and for 

several alternative harvest policies and future IPCC climate scenarios.  

To specify the environmental conditions associated with the set of climate scenarios, we will 

calculate the same index related to SSH that Stachura et al. (2014) found to be related to 

synchronous recruitment success among flatfish. This simulated environmental index will be 

calculated based on simulated data resulting from projections under IPCC climate scenarios from 

a subset of global climate models appropriate for the region (e.g. Hollowed et al. 2009, Ianelli et 

al. 2011, Sheffield et al. 2013). We will use CMIP5 simulations of the future climate based on 

the Representative Concentration Pathways (RCP) 8.5 scenario.  This scenario features relatively 

high greenhouse gas concentrations and large changes in the global climate.  The climate model 

data will be downloaded from the website maintained by the Program for Climate Model 

Diagnosis and Intercomparison (http://cmip-pcmdi.llnl.gov/cmip5/).  Full suites of 

oceanographic and meteorological variables are available towards applying the approach of 

Stachura et al. (2014). The result will be a 6-10 member ensemble of time series of the 

environmental index spanning the expected range of probable outcomes that will be used in the 

stock assessment models. We will apply the harvest policies currently used for GOA flatfish 

species as specified in the GOA Fishery Management Plan (NPFMC 2013), as well as the policy 

http://cmip-pcmdi.llnl.gov/cmip5/
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currently applied to Pacific halibut in the GOA. The harvest policies for species included in the 

GOA FMP vary by the amount of information available to conduct assessments and the 

perceived reliability of assessment results. The IPHC applies a constant exploitation rate policy 

to GOA Pacific halibut equal to the estimated value for FMSY (Stewart and Martell 2014). 

Performance measures for harvest policies, including trajectories of future biomass and stock 

status, catches, and inter-annual variation in catches, will be compared among forecasts using 

assessment models that were fitted to the same data and thus originate from the same “true” 

population dynamics (the same OM configuration). The magnitude of differences between 

forecasting results for a particular OM configuration based on assessments with different 

assumptions about recruitment-environment linkages will therefore be evaluated. By further 

comparing forecast results across climate scenarios we will address the degree to which variation 

in management performance measures can be attributed to model uncertainty in assumed 

specification of recruitment-environment linkages and to uncertainty in climate predictions. 

Benefits 

This proposed study is unique in that it will compare the ability of model selection tools to 

choose among hypotheses about recruitment-environment linkages included in SCA models. Use 

of model selection tools to choose among SCA models is not common and this will be the first 

study to compare the ability of DIC, Mohn’s statistic, and cross-validation methods to identify 

the correct SCA model. We will therefore provide guidance on the use of model selection tools 

for SCA models incorporating recruitment-environment relationships, offering the potential for 

improved ability to forecast fish population dynamics under a variety of future climate scenarios 

and harvest policies. Our project will assess the sensitivity and robustness of forecasts to correct 

and incorrect representations of recruitment-environment linkages, and evaluate the expected 

performance of current fisheries harvest policies for flatfish in the GOA, given uncertainty in 

model specification and climate scenario prediction. This study will therefore improve upon 

tools for linking recruitment and environmental conditions within stock assessments. 

SCA models such as SS3 are commonly used for stock assessments nationally and 

internationally. Our work to understand the effectiveness of model selection tools that can be 

used with SCA models to explore model specification uncertainty has broad assessment 

applications beyond incorporation of recruitment-environment linkages. The further 

development of the ss3sim R package to conduct the work in our proposed study will result in a 

modeling framework that could be used and expanded to explore: (1) other population-

environment linkages such as environmental effects on growth rates, (2) the evaluation of harvest 

policies using a full Management Strategy Evaluation (MSE), and (3) forecasting and MSE 

testing when accounting for technical interactions, such as limitations to catching several species 

of GOA flatfish in the groundfish trawl fishery due to halibut bycatch. 

Deliverables 

The project will result in a Master’s thesis for a student supervised by Dr. Gavin Fay at the 

University of Massachusetts Dartmouth, with Dr. Carey McGilliard serving as a thesis 

committee member. The project will also expand the R package ss3sim to include the ability to 

explore recruitment-environment linkages in simulation studies about the performance of stock 

assessment models. Two peer-reviewed publications will be produced. The first paper will 

present the results of the simulation study to test the efficacy of the model selection methods. 

The second paper will conduct the forecasting under the IPCC scenarios. Results will be 

disseminated at scientific meetings, including the 2016 and 2017 annual FATE meetings.  
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