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Background 
Scientists are increasingly responding to calls to improve forecasts of future ecological responses to 
perturbations such as climatic change, biological invasions, and resource exploitation (Clark et al. 
2001, Carpenter 2002). To be useful to decision makers weighing the risks and benefits of different 
actions, ecological forecasts must combine two critical elements: (1) knowledge of underlying 
mechanisms necessary to refine the accuracy of predictions, and (2) a complete characterization of 
the associated uncertainty (precision) in the forecast (Clark et al. 2001). Often, however, 
forecasters, managers, and the public focus largely on accuracy and pay too little attention to the 
implications of uncertainty (Pielke and Conant 2003). Uncertainty arises from sampling or 
measurement error, estimation of parameters from a finite sample of data, (mis)specification of a 
model to represent unknown dynamics, and environmental process noise inherent in the system 
itself (Harwood and Stokes 2003). Hierarchical or state-space models have proven to be powerful 
tools for estimating the contributions of these various sources of uncertainty (Newman et al. 2006, 
Cressie et al. 2009). Likewise, Bayesian methods offer a flexible framework for fitting these 
complex models to data and communicating probabilistic results in an intuitive form (Punt and 
Hilborn 1997, Clark 2005, Stewart et al. 2013).  

Fisheries science has often been at the forefront of applied ecology in developing forecasting 
methods (Harwood and Stokes 2003); indeed, a central goal of the FATE Program is to integrate 
process-based information into models to help predict population or ecosystem dynamics. For 
example, integrated population models (Maunder and Punt 2013) are used to forecast population 
changes while propagating uncertainty from multiple data sources and including environmental 
drivers (Methot and Wetzel 2013). In the context of Pacific salmon (Oncorhynchus spp.), the goal 
of forecasting is often to predict adult spawning run size at the population, watershed, or larger 
scales, typically one generation or less in advance (e.g., 1-3 years). Such short-term forecasts inform 
harvest policies (PFMC 2012) and provide an early warning of declines that may trigger mitigation 
actions for ESA-listed salmon ESUs (NMFS 2013). Moreover, salmon are keystone species 
(Helfield and Naiman 2006) and trends in their abundance are important indicators of the status of 
coastal ecosystems (Levin and Schwing 2011).  

Historically, most approaches to salmon run forecasting have fallen into two broad categories, 
which we refer to as “biological-oceanographic” and “sibling-based” methods. Biological-
oceanographic forecasts are based on the well-documented role of ocean climate as a driver of 
salmon survival during marine residence (e.g., Beamish 1993, Mantua et al. 1997). These methods 
seek to predict adult abundance, marine survival, or recruits per spawner based on statistical 
relationships with oceanographic indicators such as coastal upwelling (CUI) or the Pacific Decadal 
Oscillation (PDO) (e.g., Logerwell et al. 2003, Scheuerell and Williams 2005, Peterman et al. 2009, 
Rupp et al. 2012). Forecasting models based on retrospective correlations, however, tend to fail 
without warning (Nickelson 1986). Forecasts can be improved by focusing on environmental 
drivers at appropriate spatial scales (Peterman et al. 2009, Schirripa et al. 2009) or mechanistically 
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linked to biological processes (Burke et al. 2013), or by adopting methods such as dynamic linear 
models that account for autocorrelation and allow the effects of drivers to vary through time 
(Scheuerell and Williams 2005). Nevertheless, this class of models generally ignores age structure, 
and instead the response variables are aggregated across calendar years or cohorts. Post hoc 
assumptions about adult age structure are then required to translate, say, a forecast of recruits per 
spawner into adult run size in a given year. 

Sibling-based approaches, by contrast, focus on adult age structure to predict the future abundance 
of older adult age classes from observed returns of younger age classes, based on the conventional 
wisdom that cohort strength is largely determined during the first year of marine residence 
(Peterman 1982, Beamish and Mahnken 2001). This is similar to the projection of recruitment 
estimates during forecasts under assessment models (Methot and Wetzel 2013). However, forecasts 
based on these so-called sibling regressions, where the slope between the abundance of consecutive 
age classes within a cohort provides an estimate of the relative frequencies of those age classes, may 
also fail because age composition is not fixed over time, thus violating the assumption that the slope 
estimated from past data will remain constant in the future. For example, a large return of jacks 
(precocious mature males) might indicate high marine survival that portends large returns of older 
fish in future years, or it might simply reflect an unusually high prevalence of early male maturation 
in that cohort. Hybrid methods that supplement sibling-based predictions with historical averages 
offer improved forecasts in some cases (Haeseker et al. 2007, 2008), but they still do not explicitly 
account for temporal variation in age structure. 

There is growing evidence that temporal fluctuations in the abundance and demographic rates of 
salmon populations are spatially correlated at scales ranging from watersheds to ocean basins, likely 
reflecting large-scale climatic forcing (Peterman et al. 1998, Hare et al. 1999, Mueter et al. 2002, 
Pyper et al. 2005). This synchrony reduces the stability of metapopulations or “portfolios” 
(Schindler et al. 2010, Moore et al. 2010, Thorson et al. 2013), but it could be used to improve 
forecasts by accounting for inter-population correlation structure rather than modeling each 
population in isolation (Su et al. 2004). 
We propose to develop an integrated approach to salmon population forecasting that synthesizes the 
previously disparate methods summarized above. This parallels similar efforts in integrated 
assessment models for marine species, which increasingly incorporate environmental and age-
structured information (Mäntyniemi et al. 2013). Like sibling-based models, our proposed model 
takes advantage of information contained in the abundance of previously observed adult age classes, 
but our state-space framework avoids the assumption of constant age structure by allowing the age 
distribution to vary through time. Our model will use data on juvenile (smolt) abundance, where 
available, to provide additional information on cohort size. We will include biological-
oceanographic information through effects of environmental drivers on marine survival and adult 
age distribution. We will also incorporate hierarchical structures to represent spatial synchrony in 
survival and age parameters. Specifically, we propose to address the following questions: 

(1) How much can we improve forecast performance by incorporating environmental 
drivers of marine survival and maturation rates? 

(2) How does the inclusion of juvenile abundance and time-varying age structure improve 
forecast performance relative to sibling-based models that use only adult data and 
assume constant age structure? 

(3) Does a multi-population model that includes spatial synchrony in demographic rates 
provide better forecasts than independent single-population models?  
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Approach 
We view this project as consisting of three general steps to address our specific questions: (1) model 
development and software implementation, (2) data compilation, and (3) model fitting and 
simulation. Although we envision these activities proceeding iteratively and in parallel, we describe 
each separately. 
Step 1: Develop an age-structured state-space forecasting model 

The heart of our proposed forecasting approach is a simple age-structured model that projects a 
cohort of juveniles (smolts) into adults of various of ages returning to spawn some years later based 
on cohort-specific smolt-to-adult survival and age-at-return probabilities (Fig. 1). We will use a 
state-space framework, in which the demographic parameters (i.e., logit-transformed survival and 
additive log ratio-transformed age-at-return probabilities) jointly follow a multivariate logistic 
normal distribution at each time t (Aitchison 2003). The mean vector can include environmental 
drivers as regression terms (e.g., effects of ocean climate indicators on marine survival or the 
probability of returning at a given age). Multivariate normal process errors will allow us to model 
correlations between demographic rates that are not fully captured by environmental effects (e.g., a 
high marine survival in cohort t might be associated with a high probability of early maturation). 
Process errors will also include a first-order autoregressive component, allowing past patterns of 
autocorrelation to inform future predictions. The observation model for the vector of adult counts at 
each age in each cohort could be Poisson or multinomial, given the initial number of smolts and 
their survival and age-at-return probabilities. 

We will fit models to data using Bayesian Markov Chain Monte Carlo (MCMC) techniques, with 
noninformative priors specified for all parameters (Gelman 2004). A particular challenge is 
estimating survival and age-at-return for those cohorts whose older age classes have not yet 
returned. To address this, we will use particle filter MCMC, an advanced algorithm well suited to 
state-space models (Andrieu et al. 2010, Knape and de Valpine 2012), implemented using R (R 
Development Core Team 2013) and STAN (Stan Development Team 2013). 

    
Figure 1. Schematic of the proposed age-structured, state-space forecasting model showing the 
integration of both biological-oceanographic (green box) and sibling models (red box). Transition 
probabilities (blue) correspond to unknown, time-varying states, which are a combination of cohort-
specific marine survival (st) and probability of returning at age a (pa,t), both of which may depend on 
environmental drivers (Et). Model parameters will be estimated by fitting to observed time series of 
age-specific adult (Aa,t) and juvenile abundance (Jt), where available. 
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Step 2: Compile data on salmon populations and environmental drivers 

We will begin our modeling with data for ESA-listed populations already compiled in a publicly 
accessible database maintained by NMFS1. This includes information on adult run size, age 
composition, and terminal harvest for a range of populations of Pacific salmon and steelhead. 
Specifically, we will focus on Snake River Spring/Summer Chinook salmon and Oregon coast coho 
salmon because they have been the focus of previous efforts, and we have additional data on 
juvenile outmigrants (smolts) for those populations as well. In addition, we will work with federal, 
state, and tribal agencies to obtain data for other, exploited populations (e.g., Bristol Bay sockeye 
salmon) with the goal of providing operational forecasts for harvest management. 
We already have some time series of environmental drivers used in the existing literature (see 
Background). Our preliminary indicators of ocean climate include monthly PDO, monthly CUI, 
monthly North Pacific Gyre Oscillation (NPGO). We do not intend this to be an exhaustive list of 
potential environmental drivers, so we will work with regional scientists to assemble additional data 
sets related to marine food webs (Burke et al. 2013), as well as freshwater conditions that are 
thought to influence smolt-to-adult survival (Petrosky and Schaller 2010). 
Step 3: Fit alternative models and compare forecast performance 

To address each of our specific research questions, we will compare the retrospective forecast 
performance of alternative submodels or extensions of the general model described above by 
iteratively fitting them to subsets of the data and then forecasting subsequent observations. 
(1) To quantify the utility of environmental indicators in forecasting, we will compare models with 

and without covariate effects on marine survival and age-at-return probabilities, and use model 
averaging to develop an ensemble forecast. We will evaluate retrospective forecasts by 
iteratively fitting the models to years 1:T of the observed time series (i.e., smolt and adult counts 
and environmental indicators), where T ranges from some minimal series length (e.g., 10 years) 
to the full length of the dataset. Forecasts will then be generated by simulating from the 
posterior distributions of Ak,T+1, ..., Ak,T+K, where K is the maximum ocean age of adults (note 
that the number of age classes that can be predicted declines from K in year T + 1 to one in year 
T + K). We will use a variety of metrics to compare forecast skill, such as root mean squared 
error (RMSE), posterior predictive deviance, and the predicted vs. observed risk of abundance 
falling below a specified threshold (Murphy 1993, Gelman 2004). 

(2) To quantify the information gained by including juvenile abundance data, we will compare the 
general model with a variant fitted to adult abundance only. In the latter case marine survival 
cannot be estimated, but the process model will still allow the relative adult age proportions to 
vary through time. Likewise, we will also include models where these proportions are time-
invariant (i.e., the process error is zero), with and without juvenile data. The latter case is 
essentially a Bayesian version of the standard sibling regression model. These comparisons will 
be restricted to populations where juvenile data are available. Forecast performance will be 
assessed as described for question 1. 

(3) To assess the usefulness of spatially correlated population dynamics for forecasting, we will 
expand our model to include multiple populations. Each population will follow the dynamics 
shown in Fig. 1, but the underlying parameters governing the process model for survival and age 
structure, including environmental covariate effects, will be treated as random effects drawn 
from common distributions. This allows parameter estimates to “share information” across 

                                                
1 Data available at https://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0 
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multiple stocks, potentially increasing the accuracy and precision of predictions (Cressie et al. 
2009). We will compare the forecast performance of this hierarchical model with that of the 
standard model where population-level parameters are independent. In addition, the estimated 
variance components can be used to compute an index of among-population synchrony in 
demographic rates that provides another measure of the information gained when populations 
are analyzed together rather than separately (Thorson et al. 2013). For these comparisons, we 
will focus on populations of particular species within regional domains that are expected to 
share common environmental drivers.  

Benefits 
Our proposed modeling approach is novel in that it unites two longstanding traditions of salmon 
forecasting within an integrated population-dynamics framework well suited for propagating 
uncertainty about environmental and spatial relationships. Our model builds on the emerging 
literature linking oceanographic conditions to marine survival and maturation rates of salmon, while 
also taking advantage of the demographic information contained in abundance estimates for 
observed adult age classes to provide synthetic forecasts that fully quantify the uncertainty 
associated with parameter estimation, observation error, and underlying year-to-year variability in 
demographic rates. Such forecasts, presented as probability distributions of possible abundance 
given current environmental conditions, directly support fishery management decisions (e.g., setting 
preseason catch limits) and decisions based on risk to ESA-listed populations (NMFS 2013), and 
thus contribute directly to the goals of the FATE program. In addition, forecasts that explicitly 
incorporate covariation among groups of populations may be useful in designing management 
portfolios that address the role of spatial structure in fisheries management or recovery planning. 
Salmon are important indicators of ecosystem status in the California Current Large Marine 
Ecosystem Integrated Ecosystem Assessment (Levin and Schwing 2011), so improved population 
forecasts linked to broader ecological indicators will help inform the IEA process. Our proposed 
methodology also helps to bridge the gap between approaches traditionally used for salmon and the 
integrated assessment methods developed for marine fish stocks (Fournier and Archibald 1982, 
Maunder and Punt 2013). We are actively involved in assessments for salmon and West Coast 
groundfish, and we will work closely with other scientists in these communities. 
Deliverables 

We will produce adult run forecasts for the populations in our analysis, for the year following the 
most recent year of data. The dataset of salmon and environmental time series that we compile will 
be archived. Code for our models will be also provided to facilitate future development and specific 
applications to new data. We will report our findings at the FATE meeting and one other scientific 
conference, and in at least two peer-reviewed publications, one of which will be a review 
synthesizing traditional approaches to salmon forecasting and integrated population assessment. 
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