Assessing the Vulnerability of Fish Stocks to Climate Change

Mark Nelson¹, Wendy Morrison¹, Roger Griffis², Jennifer Howard², Jon Hare³, Eric Teeters¹, Megan Stachura¹, Mike Alexander⁴, Jamie Scott⁴

¹Office of Sustainable Fisheries, NMFS
²Office of Science and Technology, NMFS
³Northeast Fisheries Science Center, NMFS
⁴Earth System Research Laboratory, OAR
Outline

Vulnerability assessment methodology
1. Goals and objectives
2. Background and overview
3. Products and uses
4. Methodology
5. Attribute definitions
6. Stock profiles
7. Scoring procedure
Project Goal and Objectives

Goal: Produce a practical and efficient tool for assessing the vulnerability of a wide range of fish stocks* to a changing climate.

Objectives:
1. Develop relative vulnerability rankings across stocks
2. Determine attributes/factors driving vulnerability
3. Identify data quality and data gaps

*Methodology can be applied at the stock or species level
What’s the issue?

- **Already observing impacts** of climate change on fish stocks.
- **Not clear which stocks are most vulnerable** to continued changes in climate/ocean systems.
- **Information on fish stock vulnerability useful** in shaping science and management efforts.
- **Increasing interest and drivers** for assessing climate vulnerability (e.g., NOP, E.O.13514, E.O. 13653, Judicial rulings)
- **Lack of methods** for assessing vulnerability of fish stocks in changing climate.

Nye et al. (2009)

Distributional shift of Red Hake

1968-1980

1995-2008
Why Vulnerability Assessments?

Vulnerability assessments:

- Identify **which** species are at risk
- Help identify **why** species are at risk
- Used to **inform** science priorities and management considerations.
What do we mean by vulnerability?

- Vulnerability = risk of *changes in stock abundance or productivity* in a changing climate.
- Stocks with ability to shift distributions in a changing climate may receive a “low vulnerability” ranking.
- Subset of the attributes may be useful in identifying stocks that possess the *ability to shift distributions*.
Examples from the Terrestrial Environment

Example Vulnerability Assessments Include:

- U.S. EPA’s Threatened and Endangered Species Vulnerability Framework
- USDA System for Assessing Vulnerability of Species
- Climate Change Vulnerability Index for Species in Nevada (Nature Serve)
- Scanning the Conservation Horizon is an inter-agency guide to climate vulnerability assessments.
Methodology Development

2011
• *Developed initial outline* based on existing methodologies.
• *Established NMFS expert group* and held workshop to draft methodology (reps from each Science center and NMFS regional office)

2012
• *Completed draft definitions* of sensitivity attributes with expert group review
• *Completed 3 pilot tests* of biological methods (internal, New England (NE) and Caribbean)

2013
• *Revised sensitivity and exposure attributes*, completed web database etc
• *Finalized methodology*

2014
• Spring – *Completed assessment* of 79 NE and Mid Atlantic species
• Summer/Fall - *Submit papers* on methodology and NE implementation
Methodology

Vulnerability Assessment Framework

- Uses a combination of sensitivity attributes and climate factors to assess vulnerability
- Uses existing information to create species profiles

Species Profiles

- Uses species profiles and expert opinion to score each stock

Stock Scores

- Stock Scores [low, moderate, high, very high]

Multi-Stock Vulnerability Rankings

- Produces vulnerability ranking for stocks

A vulnerability narrative for each species will identify key attributes

Stock Vulnerability Report

- Uses species profiles and expert opinion to score each stock
Expected Products

- **An index of relative vulnerability** across stocks.
- **Information on the key attributes** behind the vulnerability score of each stock.
- **Identification of the major data gaps.**
- Completed stock profiles and climate projections available for other projects.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleepyfish</td>
<td>Very High</td>
</tr>
<tr>
<td>Plantfish</td>
<td>High</td>
</tr>
<tr>
<td>Alligatorfish</td>
<td>Moderate</td>
</tr>
<tr>
<td>Popfish</td>
<td>Low</td>
</tr>
<tr>
<td>Spotfish</td>
<td></td>
</tr>
<tr>
<td>Pencilfish</td>
<td></td>
</tr>
<tr>
<td>Orangefish</td>
<td></td>
</tr>
<tr>
<td>Hiddenfish</td>
<td></td>
</tr>
<tr>
<td>Rightfish</td>
<td></td>
</tr>
<tr>
<td>Spiderfish</td>
<td></td>
</tr>
<tr>
<td>Chocolatefish</td>
<td></td>
</tr>
<tr>
<td>Flowerfish</td>
<td></td>
</tr>
<tr>
<td>Lemonfish</td>
<td></td>
</tr>
<tr>
<td>Lightfish</td>
<td></td>
</tr>
<tr>
<td>Wrongfish</td>
<td></td>
</tr>
<tr>
<td>Greenfish</td>
<td></td>
</tr>
<tr>
<td>Ostrichfish</td>
<td></td>
</tr>
<tr>
<td>Candyfish</td>
<td></td>
</tr>
<tr>
<td>Picklefish</td>
<td></td>
</tr>
<tr>
<td>Redtoefish</td>
<td></td>
</tr>
</tbody>
</table>
Potential Uses

Science:
- Identify stocks that can benefit from incorporating environmental variability into stock assessments
- Identify gaps in information for use in shaping research priorities
- Identify stocks that could benefit from increased monitoring to better quantify when expected climate impacts occur

Management:
- Inform management decisions about catch amounts, and rebuilding plans
- Provide information for use in EIS’s, BiOps and other decision making documents
- Identify potential management actions that might reduce vulnerability and increase stock resilience in a changing climate
Methodology

Stock Vulnerability

Exposure
- Sea surface temperature
- Air temperature
- Salinity
- Ocean acidification (pH)
- Precipitation
- Currents
- Sea level rise

Sensitivity
- Habitat Specificity
- Prey Specificity
- Sensitivity to Ocean Acidification
- Sensitivity to Temperature
- Stock Size/Status
- Other Stressors
- Adult Mobility
- Spawning Cycle

Exposure factors will vary depending on the region
Exposure

- Defined as how much climate related change a stock is likely to experience
- Quantified as the spatial overlap between a stocks’ current distribution and the expected climate change
- Mean change is related to current variability (Z-score)
- Changes in variability are measured with an F-test (future variability/current variability)

Spatial model of climate change & species range

Species current distribution
OAR website on expected climate change

- Interaction with OAR resulted in web product created to meet the needs of our methodology.
- Thanks to Jamie Scott, Mike Alexander and Jon Hare.

http://www.esrl.noaa.gov/psd/ipcc/ocn/ccwp.html
Sensitivity

Definition: Biological attributes believed to be indicative of the stock’s response to climate change. They include the stock’s resilience and its adaptive capacity\(^1\)

12 attributes relate to current life history characteristics:

- Habitat Specificity
- Prey Specificity
- Sensitivity to Ocean Acidification
- Sensitivity to Temperature
- Stock Size/Status
- Other Stressors
- Adult Mobility
- Spawning Cycle
- Complexity in Reproductive Strategy
- Early Life History Survival and Settlement Requirements
- Population Growth Rate
- Dispersal of Early Life Stages

\(^1\) Williams et al. 2008
Attribute Definition Document

Specific definitions and bins are available on request for each of the sensitivity attributes. Example provided below (in very small print)

Goal: To determine if the stock is a prey generalist or a prey specialist.

Relationship to climate change: Understanding how reliant a stock is on specific prey species could predict its ability to persist as the climate changes.

Background: Impacts extend beyond the stock in question to include species within its food web.

How to use expert opinion: Please account for ontogenetic shifts in diet; however, limit your response to the juvenile and adult life stages as larvae are considered elsewhere.

Prey Specificity Bins:

- **Low:** The stock eats a large variety of prey.
- **Moderate:** The stock can feed on a wide variety of prey, but are restricted to a limited number (~3) of prey types (copepods, krill, forage fish, etc).
- **High:** The stock is partial to a single prey type. It is able to switch to a different prey type, but this may negatively impact fitness.
- **Very High:** The stock is a specialist, and is unable to switch to alternative prey.
Stock Profiles

Purpose: Synthesize key information for each stock for use by experts in scoring attributes. Template is available on request.

Species Profile for Vulnerability Assessment to Climate Change

Species Name: Tilefish (*Lopholatilus chamaeleonticeps*)

Stock Name: Mid Atlantic Bight & south of Cape Hatteras

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>DATA</th>
<th>SOURCE</th>
<th>DATA QUALITY SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat specificity - To determine on a relative scale if the stock is a habitat generalist or a habitat specialist while incorporating information on the type and abundance of key habitats.</td>
<td>Much of below applies to juveniles as well as adults. Juveniles often occupy simple vertical shaft burrows in semi-lithified clay. Lobster pots, red crab traps, ship wrecks and other artificial structures have also been used by tilefish. Steimle et al (1999) suggest that juveniles are more tolerant of low temperatures than adults, which could help recruits survive in marginal habitat conditions. Depth range has been found to be 90-264 m, with most < 170 m and at a maximum of 366 m.</td>
<td>Able et al. 1982; Steimle et al., 1999; Reid et al., 1999;</td>
<td>3</td>
</tr>
<tr>
<td>Prey specificity - To determine on a relative scale if the stock is a prey generalist or a prey specialist while incorporating information on the type and abundance of key prey types.</td>
<td>Post-larval tilefish have eaten benthic organisms, such as crabs (spider, galatheids, pagurids) conger eels, Atlantic hagfish, bivalve mollusks, polychaetes, holothurians, and sea anemones. They also eat near-bottom or pelagic prey such as salps, squid, hyperiid amphipods, small spiny dogfish, Atlantic mackerel, Atlantic herring, and silver hake. Human trash (potato peels, meat bones, and shiny hardware) were also eaten. Freeman and Turner (1977) reported that juveniles ate more echinoderms and mollusks than larger tilefish.</td>
<td>Linton (1901); Bigelow and Schroeder (1953); Freeman and Turner (1977); Collins 1884; Steimle et al., 1999;</td>
<td>3</td>
</tr>
</tbody>
</table>
5 Point Tally Scoring System

- The scoring for each attribute is done by the experts assigning 5 tallies within the 4 scoring bins
- This gives experts the ability to express uncertainty in their score

Example:

<table>
<thead>
<tr>
<th>Low uncertainty scenario</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderate uncertainty scenario</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High uncertainty scenario</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Data Quality Score

- Data quality is different than uncertainty; however, they can be related
- This score will be used to identify data gaps

<table>
<thead>
<tr>
<th>Data Quality Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Adequate Data. The score is based on data which have been observed, modeled or empirically measured for the species or stock in question and comes from a reputable source.</td>
</tr>
<tr>
<td>2</td>
<td>Limited Data. The score is based on data which has a higher degree of uncertainty. The data used to score the attribute may be based on related or similar species, come from outside the study area, or the reliability of the source may be limited.</td>
</tr>
<tr>
<td>1</td>
<td>Expert Judgment. The attribute score reflects the expert judgment of the reviewer and is based on their general knowledge of the species, or other related species, and their relative role in the ecosystem.</td>
</tr>
<tr>
<td>0</td>
<td>No Data. No information to base an attribute score on. Very little is known about the species or related species and there is no basis for forming an expert opinion (use judiciously).</td>
</tr>
</tbody>
</table>
Sensitivity and Exposure Scoring Rubric

- **Step 1 – Attribute Score**
- Weighted average of all experts “tallies”

![Scoring Bin Table]

<table>
<thead>
<tr>
<th>Habitat Specificity</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

5 experts = 25 “tallies”

\[
\text{Attribute Score} = \frac{(1\times1)+(2\times6)+(3\times13)+(4\times5)}{25} = 2.88
\]
Sensitivity and Exposure Scoring Rubric

• Step 2 – Component Score (Sensitivity/Exposure)
 • 12 Sensitivity Attributes – 12 Exposure Factors
 • Very high = 3 or more attribute scores ≥ 3.5
 • High = 2 or more attribute scores ≥ 3.0
 • Medium = 2 or more attribute scores ≥ 2.5
 • Low = less than 2 attributes scores ≥ 2.5
Step 3 – Vulnerability Scoring Rubric

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Exposure</th>
<th>Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td></td>
<td>Very High</td>
<td>Very High</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Very High</td>
<td>Very High</td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Very High</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Web Enabled Database

WARNING

This is a NOAA computer system. NOAA computer systems are provided for the processing of official U.S. Government information only. All data contained on NOAA computer systems is owned by the NOAA and may be monitored, intercepted, recorded, read, copied, or captured in any manner and disclosed in any manner, by authorized personnel. THERE IS NO RIGHT OF PRIVACY IN THIS SYSTEM. System personnel may give to law enforcement officials any potential evidence of crime found on NOAA computer systems. USE OF THIS SYSTEM BY ANY USER, AUTHORIZED OR UNAUTHORIZED, CONSTITUTES CONSENT TO THIS MONITORING, INTERCEPTION, RECORDING, READING, COPYING, OR CAPTURING and DISCLOSURE.

WARNING

Welcome to the Fish Climate Vulnerability Assessment (FCVA) System

Username
Password
Login

Forgot Password
Forgot your password? Click here.

Need to contact NMFS for access
Scoring Process

- Experts score assigned stocks individually prior to workshop.
- Experts compare and discuss preliminary scores at workshop.
- Experts can adjust their scores if needed.

Each color represents the 5 tallies for one expert.
American eel: Because this species is a generalist and can adjust easily to a variety of habitats and prey, it should be more resilient as the climate changes. However, since the entire species spawns in the Sargasso sea, and larvae drift and eat with the currents for months, climate change impacts on these life stages are not well understood.

In addition, stressors on the species are high. Much of the eel’s habitat is impacted by freshwater dams, and an introduced parasite has become prevalent in most populations.
NE/MA Assessment

- In March, 2014, an assessment was completed on all NEFMC, MAFMC, and ASMFC managed species
- Results should be ready for publication in 2014
Acknowledgements:

Management Team:
Dr. Wendy Morison (SF) and Mark Nelson (SF) Co-leaders
Roger Griffis (ST), Dr. Jennifer Howard (ST),
Dr. Wes Patrick (SF), Eric Teeters (SF)

Climate Change Projections & Maps:
Jamie Scott (ESRL), Mike Alexander (ESRL)

Pilots:
Jon Hare (NEFSC)
Jim Berkson (SEFSC), Bill Arnold (SERO)

Working Group Members:
Jon Hare (NEFSC), Bill Arnold (SERO), Jon Brodziak (PIFSC), Jonathan Phinney (SWFSC), Paul Spencer (AFSC), Rusty Brainard (PIFSC), Brett Weidoff (PIRO), Josh Lindsay (SWRO), Nick Tolmeri (NWFSC), Mike Pentony (NERO), Tobey Curtis (NERO), Yvonne deReynier (NWRO), Rick Hart (SEFSC), Karla Gore (SERO), Forest Bowers (ARO), and Mike Clark (HMS)