Allocation without Property Rights

Jorge Holzer and Kenneth McConnell
University of Maryland

Seattle
September 23, 2014
Introduction

- Competition between commercial and recreational sectors for harvest of near-shore species has increased in recent years

- Fisheries managers compelled to consider explicit allocations of quota for the respective sectors to mitigate user conflicts

- Commercial quota usually enforced with season closures when no individual allocation is in place

- Recreational restrictions typically include size and bag limits
Optimal allocation: the equi-marginal principle

- Economic value maximized when TAC allocated at point where marginal WTP equal for both sectors (point O)
Optimal allocation: the equi-marginal principle

- Economic value maximized when TAC allocated at point where marginal WTP equal for both sectors (point O)
Optimal allocation: the equi-marginal principle

- Economic value maximized when TAC allocated at point where marginal WTP equal for both sectors (point O)
Optimal allocation: the equi-marginal principle

- Economic value maximized when TAC allocated at point where marginal WTP equal for both sectors (point O)
This standard equi-marginal principle has been used in actual allocation studies: summer flounder, scup, red grouper, etc.
Optimal allocation: the equi-marginal principle

However, the equi-marginal principle only holds if access to the catch within each sector is efficient:

- Efficiency arrived at by allocation by a perfectly informed manager
- Alternatively, efficiency achieved by well-functioning markets for quota
Optimal allocation: the equi-marginal principle

However, the equi-marginal principle only holds if access to the catch within each sector is efficient:

- Efficiency arrived at by allocation by a perfectly informed manager (unfeasible)
- Alternatively, efficiency achieved by well-functioning markets for quota
In the absence of markets and price-sorting, we need to revisit the equi-marginal principle.
Access scenarios and aggregate value
A simple example

- Two available units of a public resource
- Three potential users with WTP: $v_1 = $5, $v_2 = $3, and $v_3 = $1
- The *efficient assignment* would allocate the two units to the highest valuation individuals:

\[
\begin{align*}
 a(v_1, 1) &= 1, & a(v_2, 1) &= a(v_3, 1) = 0 \\
 a(v_2, 2) &= 1, & a(v_1, 2) &= a(v_3, 2) = 0 \\
\Rightarrow \quad V &= v_1 + v_2 = $8
\end{align*}
\]
Access scenarios and aggregate value

A simple example

- Two available units of a public resource
- Three potential users with WTP: $v_1 = $5, $v_2 = $3, and $v_3 = $1

- If under access scenario all valuations have equal probability (random access) to access the resource:

$$a(v_i, j) = 1/3 \text{ for } i = 1, 2, 3 \text{ and } j = 1, 2,$$

$$\Rightarrow V = \frac{2}{3}(v_1 + v_2 + v_3) = $6$$
Optimal allocation: revisiting the equi-marginal principle

- Marginal values insufficient for inferring aggregate value. It is critical to understand the rules governing access and the sorting of marginal values they induce.
Marginal values insufficient for inferring aggregate value. It is critical to understand the rules governing access and the sorting of marginal values they induce.

⇒ We need a “expected” value function
Access scenarios and assignments

- The expected value function:
Access scenarios and assignments

- Welfare depends on how MWTPs are sorted under each scenario
Optimal allocation: the equi-marginal principle revisited

- Economic value maximized when TAC allocated at point where \textbf{expected} marginal WTP equal for both sectors.
Optimal allocation: the equi-marginal principle revisited

Generalized Equi-marginal Principle:
For any pair of access scenarios A_I and A_{II}, the allocation of harvest that maximizes total welfare is defined by

$$EV_I(q^*) = EV_{II}(X - q^*)$$

$$\int_0^{\hat{v}} v\gamma_I(v, q^*)dF(v) = \int_0^{\hat{u}} u\gamma_{II}(u, X - q^*)dG(u)$$
Optimal allocation: the equi-marginal principle revisited

- Corner solutions are possible!

\[EV_1(y) = \bar{v} \]
\[EV_2(X - y) = \bar{u} \]

Sector I quota: \(q^* = X \)
Sector II quota: \(X - q^* = 0 \)
Fisheries management and access scenarios

- Commercial sector: season closures redistribute access towards low-cost, high valuation operators

- Commercial sector: capital and gear restrictions lessen this redistribution

- Recreational sector: effect of season closures and bag limits on probability of access depend on correlation of income, cost and skill
An illustration: Gulf of Maine cod and haddock

- Simulations from bioeconomic model used by NOAA Northeast Fisheries Science Center to examine effects of changes in possession and size limits.

- Model combines information derived from an angler CE survey, actual biological stock structures, and catch-at-length data.

- We looked at two scenarios:

<table>
<thead>
<tr>
<th></th>
<th>Cod Limits</th>
<th></th>
<th>Haddock Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity</td>
<td>Size</td>
<td>Quantity</td>
</tr>
<tr>
<td>Scenario A</td>
<td>9</td>
<td>19"</td>
<td>35</td>
</tr>
<tr>
<td>Scenario B</td>
<td>9</td>
<td>24"</td>
<td>35</td>
</tr>
</tbody>
</table>
An illustration: Gulf of Maine cod and haddock

- Total welfare under scenario A is $10 million (harvest of 1.2 million pounds)
Total welfare under scenario B is $4.4 million (harvest of 529,000 pounds)
An illustration: Gulf of Maine cod and haddock

- Same reduction in harvest could be accomplished by closing season in May-Jun. Total welfare would be $3.7 million
An illustration: Gulf of Maine cod and haddock

- Welfare reduction of reallocating recreational quota depends on management instrument used to implement reallocation!
Summary

- There are no declining MV schedules without incentive compatible rules of access

- In the absence of declining MV schedules, information about access to the resource also required

- Access scenarios and sorting of MVs determined (explicitly or implicitly) by management rules

- Optimal allocation given by the equality of expected marginal values across sectors