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Motivation |

Two recent reports find that fisheries are seriously
overexploited (in contrast to Stratton report from 1969)

— Pew Oceans Commission, State of America's Oceans: Charting A
Course for Sea Change

— U.S. Oceans Commission, A Blueprint for the 21st Century

Traditional wisdom: open-access leads to overexploitation
— Individual transferable quotas, restricted access

Establishment of 200-mile zones around countries
— Includes more than 85% of fish stock



Gordon-Schaefer Model

growth Static optimum: slope of growth function
equals interest rate o

Dynamic optimum (stock dependent cost):
g (F*) + mipopeisy = 0

harvest = (constant 0) * effort * stock
marginal cost of effort
price of fish p

» fish stock
Fuax




Motivation I

 Economists have addressed uncertainty
— Focus predominantly on I.i.d. error terms

— Bad outcomes and good outcomes balance out
o Several consecutive bad outcomes are unlikely

— Uncertainty has limited effects
« Strongest effect of stock uncertainty, Sethi et al. (forthcoming)

* Recent evidence that there are systematic
fluctuations independent of fishing efforts

— Cycles: El Nino, Pacific Decadal Oscillation

— Prey fish (short-lived) are more impacted that long-
lived predators



Evidence from Pacific Northwest
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Evidence from California

B Pacific Decadal Oscillation
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ldea Behind Paper

e Focus of this paper
— Systematically oscillating growth rates / carrying capacity

— Implications for maximizing economic rent
* Model with stock-independent cost
* Model with stock-dependent cost

— Extend analysis to multi-species models

e Earlier studies

— Parma (1990)
» Non-stationary stock recruitment

— Costello, Polasky, and Solow (2001)
« Examine resource management with prediction biological conditions



Outline

Models with Time-Varying Parameters:

2) Single-Species Model: Stock-dependent harvest cost
3) Multi-Species Model: Stock-independent harvest cost

Conclusions



Osclllating Growth Rates
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Cyclical Fluctuations in Growth Rate
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Outline

Models with Time-Varying Parameters:

1) Single-Species Model: Stock-independent harvest cost

3) Multi-Species Model: Stock-independent harvest cost

Conclusions



Single-Species Model

h(t)

11}'L1(%x -/0'00 e ™0 [ph.(t) — wQF(t)] dt st. F(t) = [ao(t) + o F(£)] F(t) — h(t)

Where F: fish stock
p: price of fish
h: harvest rate
. cost of effort
e: effort
@ effort factor, h = @ Fe
o discount factor
a,, ;. parameters of growth function



Derivation of Optimal Stock Level

Op [0 — ap(t)] + o:lw) ? dw

4o, Op Bl 20010p

e Dynamic optimum is given by logistic growth function g(F)
g/ (F*) + wg(F™)

F*(0pF*—w)

e The optimal stock level is
— Increasing in the growth parameters a,,a; and cost of effort o
— decreasing in the interest rate o, effort factor 8 and price of fish p.



Osclillating Growth Rates

Optimal Harvest Rate
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Osclillating Growth Rates

Maximum Sustainable Harvest
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When Is It best to walit?

 Reduce harvest when there Is a big return on

Investment, i.e., on up-cycle

— In reality fishermen often argue that conditions are getting better
and one should hence increase harvest quotas, but this the
opposite of the optimum.

e Harvest is zero if growth rate is less than change in the
optimal desired stock level.



Outline

Models with Time-Varying Parameters:
1) Single-Species Model: Stock-independent harvest cost

2) Single-Species Model: Stock-dependent harvest cost

3) Multi-Species Model: Stock-independent harvest cost

Conclusions



Comparison to Traditional Models

growth Static optimum: slope of growth function
equals interest rate 6

Dynamic optimum (stock dependent cost):

% wqg(F™*
g (F*) + F*(G%F*zw) =9

marginal cost of effort
price of fish p

» fish stock




Osclillating Growth Rates

Using a Constant Target Stock
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Osclillating Growth Rates

Harvest Quota — Based on Average Growth

—Constant Catch —Constant Catch
0.1 = Optimal Policy L = Optimal Policy

o 0.08f

g -
& S
g 0.061 %
o L
T 0.04¢

]
O . 1
0 50 100 150 0 50 100 150
Time Time

growth rate: I'::[0.15+O.O755in(257§j—0.15F}F

price p = 225, cost of effort w = 2, effort factor & =1, interest rate 6 = 2.5%



Osclillating Growth Rates

Fraction of Stock — Based on Average Growth

—Constant Fraction of Stock
= Optimal Policy
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Optimal Harvest Policy

Random Growth Rates - Lagged Government Policy
Using 20-year Lag, 5-year Reauthorization
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Outline

Models with Time-Varying Parameters:
1) Single-Species Model: Stock-independent harvest cost

2) Single-Species Model: Stock-dependent harvest cost

3) Multi-Species Model: Stock-independent harvest cost

Conclusions



Difficulty of Estimating Periodicity
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Estimating Periodic Parameters
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Outline

Models with Time-Varying Parameters:
1) Single-Species Model: Stock-independent harvest cost

2) Single-Species Model: Stock-dependent harvest cost

Conclusions



Multi-Species Model
(3 fish species i1 =1,2,3)

. ha(t)
_ 0t [k (2 ho(t) — w—2
12?3(/0 e [m 1(t) ~ P 2(t) (D) +

. Fl(t) = [lelo + OfllFl(t) + Cl’.lgFg(t) + 0613}?3(17)] Fl(t) — hl(t)

Fy(t) = [0 + ani Fi(t) + anFa(t) + ass F3(t)] Fa(t) — ho(t)

F3(t) = [os0 + 31 Fi(t) + asaFa(t) + assF3(t)] F3(t) — hs(t)

Where F.: fish stock p:: price of fish
h.: harvest rate o. discount factor
e;: fishing effort @: cost of effort

@: effort factor, h, = @ F, e
a;: parameters of growth function



Multi-Species Model

e System has unique stable equilibrium if
— A Is Invertible

— A¢ of linearized system has three negative
eigenvalues




Multi-Species Model

Optimal Economic Harvest
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Implications of Periodic Fluctuations

* Interactions between various species transmit
fluctuations to other species

* Relatively small fluctuations in one species can build up
In the system

— Optimal harvest rates vary drastically even though stock size is
rather constant

— Classical rule which bases harvest on stock size is misleading



Outline

Models with Time-Varying Parameters:
1) Single-Species Model: Stock-independent harvest cost
2) Single-Species Model: Stock-dependent harvest cost

3) Multi-Species Model: Stock-independent harvest cost



Conclusions

« Large biological literature suggesting
— Periodic fluctuations in growth rates

« Implications for optimal management of fisheries
— Time-invariant rules will be misleading and suboptimal
» Harvest closures optimal when conditions improve most rapidly
— Adaptive policies can bring the system to the brink of extinction

— Selective fish-specific harvesting quotas will not necessarily
protect a species

 Requirement to manage system as a whole
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