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Executive Summary 
The NOAA-National Marine Fisheries Service (NMFS) held a National Ecosystem Modeling 
Workshop (NEMoW) on March 18-20, 2014 in Seattle, Washington. This 3rd NEMoW was held 
as a national workshop analogous to National Stock Assessment Workshops, National Habitat 
Assessment Workshops, and National Economists Meetings for the purpose of engaging the 
NMFS ecosystem modeling (EM) community. Primary goals of these NEMoWs are to develop 
best practices and recommendations on how the NMFS EM community can best help the NMFS 
to meet its mandates and obligations. There were 43 participants, six invited 
speakers/observers, and six visiting observers. 
 
The theme of NEMoW 3 was “Mingling Models for Marine Resource Management” and focused 
on approaches and best practices for multiple model inference (MMI) in the context of living 
marine resource (LMR) management. Specifically, the EM community gathered to discuss how 
MMI is used in other contexts; the social and management implications of using multiple 
models; and how the EM community can draw from these other fields and apply these 
approaches while considering the LMR management context. The stated objective of this 
workshop was to evaluate best practices for using multiple model inference in a living marine 
resource management context. 
 
Ecosystem modeling for LMR management includes a range of quantitative representations of 
part or all of an ecosystem focused on a single LMR, aggregate groups of LMRs, or whole food 
webs with focal LMRs and the relevant biophysical context of the LMR or LMR group/food web. 
As such, an EM is a quantitative tool used for resource management that incorporates factors 
internal and external to a focal LMR or group of LMRs.  The tools may be something as simple 
as a statistical analysis of regression model showing the correlations between a particular fish 
species and its habitat, or it may be as complex as an end-to-end model that incorporates 
oceanographic model output and interactions between fished species, fisheries, and protected 
resources. The important aspect of this definition is that an EM is focused on practical 
application for simply attempting to understand a system, for understanding trade-offs among 
ecosystem components, or to set specific management reference points.   
 
NMFS has a wide range of major legislative mandates (Magnuson-Stevens Fishery Conservation 
and Management Act – MSA, Marine Mammal Protection Act – MMPA, Clean Water Act – CWA, 
Coastal Zone Management Act – CZMA, Endangered Species Act – ESA) that require a 
movement towards many levels of ecosystem-based management (EBM). NOAA’s mission, 
vision, and policy statements have promoted and continue to promote movement towards 
ecosystem-based management.  Most of the NMFS mandates require the use of the best 
available science. NEMoWs have been designed to stimulate and advance the use of ecosystem 
models to ensure the best available science is developed and applied towards ecosystem 
approaches to management. 
 
Since the first NEMoW, NMFS scientist have developed and begun to apply a variety of EM 
approaches in their regions.  As more ecosystem models have been developed a need to 
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determine how to use multiple models to provide the best available science has arisen. 
Moreover, in the 2nd NEMoW, participants were given a broad overview of the use of multiple 
models in climate science. Participants learned how multiple models help to manage 
uncertainty in scientific advice provided by models. The NEMoW Steering Committee 
determined that the use of multiple modeling approaches warranted further exploration. With 
support from the Science Advisory board, the Steering Committee elected to hold a workshop 
focused on MMI. 
 
Broadly defined, MMI is the application of multiple quantitative representations (models) of a 
system in an effort to improve the understanding of how the system works.  The models used 
may vary only slightly with different initial parameters being used or with different structural 
configurations of parts of the model.  Alternatively multiple models with very different 
structures and parameters can be used.  The practice of using models enables the range of 
uncertainty in initial parameters and in model structure to be accounted for when considering 
results and conclusions drawn from the models.  This practice has been used extensively in 
other fields such as weather prediction, climate science, and social sciences, and has helped to 
advance those fields and improve the utility of their models. 
 
During NEMoW 3, participants discussed the types of MMI, the reasons for doing MMI, and the 
benefits of doing it. In addition, participants outlined the generally used methodologies for 
MMI and how those approaches may be used in ecosystem approaches to LMR context. These 
results are discussed in the body of this report.  Key conclusions on best practices and 
recommendations are outlined below and are discussed more fully in the Results section of the 
report. 
 
Key conclusions on best practices:  

1) Clearly define the type of management advice the models provide as strategic or 
tactical. 

2) Use a range of MMI analytical or quantitative approaches appropriate for the type of 
question, the types of uncertainty, and amount of data available. MMI approaches  
include: 

a. Single model ensembles (i.e., sensitivity analysis), 
b. Multiple model ensembles, 
c. Model selection and weighting schema (e.g., Bayesian, AIC), 
d. Biological Ensemble Modelling Approach , 
e. Expert opinion approaches (Delphic methods, Fuzzy Logic Mental Models).   

3) Evaluate model performance/forecasting skill to support model improvement, model 
selection, and development of model ensemble weighting schema. 

4) Use social science considerations/metrics as part of the MMI evaluation process and in 
communicating the results from MMI processes. 

5) Where MMI is being implemented implicitly, begin to explicitly demonstrate that MMI is 
being used. 

 
Four recommendations emerge from these conclusions:  
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1) Adopt MMI best practices (described above). 
2) Perform simulation studies to evaluate skill of models to be used for MMI.  
3) Evaluate cases where MMI has been attempted by NMFS for LMR management. 
4) Develop and maintain EM and MMI capacity and infrastructure. 

 
Given several forthcoming initiatives and copious calls for EBM, NEMoW 3 was quite timely and 
most attendees thought NEMoWs should persist and smaller, inter-sessional NEMoW working 
groups should be developed to focus on specific issues common to many regions. The NMFS is 
in a favorable position to implement MMI when applying EM to key LMR issues. Doing so, will 
enable progress in EM and improve its utility for LMR management. While the development of 
expertise and technical capacity is still needed, there exists a reasonably established foundation 
for NMFS to build upon for future EM efforts. 
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Introduction 
For many years, scientists and administrators at NMFS have recognized the need for NMFS 
scientists who are involved with ecosystem modeling (EM) (in its various forms and array of 
contexts critical to the living marine resource (LMR) management mission) to routinely gather, 
share methodologies and discuss recent advancements in the field.  Similar to National Stock 
Assessment Workshops (NSAWs), National Habitat Assessment Workshops (NHAWs) and 
National Economists Meetings, NEMoWs (National Ecosystem Modeling Workshops) were 
established.   
 
The general objectives of NEMoWs are: 1) to address broad questions of national interest for 
applied LMR-oriented EM, 2) to provide a forum for ecosystem modelers within NMFS to 
network and share information on EM advancements and best practices, and 3) to provide a 
vehicle to advance EM for LMR within NMFS. The specific objective for this 3rd NEMoW 
(NEMoW 3) was to evaluate best practices for using multiple model inference (MMI) in a LMR 
management context. 
 
In this spirit of advancing EM science for LMR management and with the stated objective of 
evaluating best practices for using multiple model inference in a living marine resource 
management context, NMFS scientists conferred for 3 days at NEMoW 3. This technical 
memorandum captures the essential points that emerged from this workshop. 
 
NEMoW 3 was important for making continued progress in integrating ecosystem 
considerations into fisheries management as highlighted in the Magnuson-Stevens Fishery 
Conservation and Management Act.  The methodologies will be important for marine mammal 
and endangered species population assessment as required in the Marine Mammal Protection 
Act, the Endangered Species Act, and more broadly for cumulative effects under the National 
Environmental Protection Act.  In addition, these approaches will be important for 
incorporation into the science for habitat management conducted by the NMFS under multiple 
mandates. NOAA polices have EBM at the core of its mission, and these EM approaches are the 
analytical engine central to these ecosystem-based approaches.   

Background 
The topic of “mingling models for marine resource management” was chosen as a theme for 
NEMoW 3 for many reasons. The major legislative mandates for NMFS require a movement 
towards various levels of ecosystem-based management, and NOAA’s mission, vision, and 
policy statements continue to espouse an ecosystem approach.  In addition, many of these 
mandates require the use of the best available science. Thus a need arises for EM to provide 
the best available science to inform NMFS in a variety of regulatory roles. As the NMFS EM 
effort matures among the regions, and more ecosystem models are developed NMFS scientists 
must determine how to use multiple models to provide the best available science. This does not 
necessarily mean best available model, and work in other disciplines indicates that using MMI 
usually provides better results than simply picking one model. 
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In a previous NEMoW focused on dealing with uncertainty in EM, participants briefly discussed 
the value of using multiple models for dealing with uncertainty in EM for LMR management. 
Several reports and publications since then have espoused this approach. Ensemble modeling is 
common in other disciplines, but less so in an EM context.  To further explore this theme the 
NMFS organized and held a NEMoW with an emphasis on evaluating methods, protocols and 
rationales for using MMI in an LMR context.  One of the best ways to deal with uncertainty in 
EM (especially structural uncertainty of complex models) and provide the best available science 
for decision-making is to use multiple models. NEMoW 3 examined the approaches for 
developing MMI and for communicating the results of MMI to stakeholders and managers in a 
way that can provide clear summary management advice while maintaining transparency of the 
scientific rationale used.   
 
The workshop format for NEMoW 3 was designed such that NMFS Centers, offices, and labs 
could summarize their EM and MMI ongoing efforts. These presentations helped to provide 
invited speakers some context for MMI in NMFS.  Center presentations were followed by a 
plenary discussion on the common themes and applications of MMI for EM across regions and 
management contexts.  
 
After the context-setting plenary discussion of regional applications, plenary presentations on 
the mechanics and implications were held. 
 
The first set of plenary presentations provided background information on MMI and 
information on MMI application in other scientific disciplines as well as MMI for LMR in regions 
outside of NMFS’s jurisdiction.  Two presentations followed by plenary discussion were held on 
the first day, and two presentations followed by breakout discussions and plenary discussion of 
breakout were held on the second day. This set of sessions was designed to consider the types 
and approaches of MMI that might be applied across NMFS regions. 
 
The second set of plenary presentations was focused on social and management implications of 
using multi-models in an ecosystem-management context.  This was followed by breakout 
discussion and plenary summary of the discussion.  This session was designed to consider how 
the MMI approaches used in other disciplines and geographic regions may be suitable for MMI 
in a LMR context for NMFS regions. 
 
The last day of the workshop was designed such that breakout groups (fortified with the 
information presented over the previous 2 days) could develop ideas for best practices in 
implementing MMI in a LMR context by NMFS and recommendations for moving forward with 
MMI. A brief plenary session was held to capture other themes in EM that should be explored 
in NEMoW working groups. 
 
This approach fostered a range of interaction formats and allowed for the revisiting of any 
particular topic from multiple perspectives, building upon the strength of having the NMFS EM 
community gathered from the different regions. The primary workshop objective was to 
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address each of the workshop’s Terms of Reference (TORs) such that we could explore the 
options for implementing MMI and make reasonable recommendations of how the NMFS could 
proceed in implementing MMI in its EM endeavors.  
 

Terms of Reference (TORs) 
 
Theme: Mingling Models for Marine Resource Management – Multiple Model Inference 
 
Objective: Evaluate best practices for using multiple model inference in a living marine resource 
management context. 
 
1) Outline and review precursor steps - including determine the purpose for using multiple 
model inference in ecosystem assessment and outlining the capabilities and limitations of the 
models to be used for inference (e.g., is one model more capable of representing lower-trophic 
level groups?). 
2) Outline and review the mechanics of multiple model inference (e.g., linking models, model 
ensembles). 
3) Discuss management implications and review case studies.  Specifically discuss the policy and 
sociological considerations when using different models that may have divergent results. 
4) Report on current efforts underway or planned at NMFS centers/labs/offices.   
5) Capture best practices for employing multi-model inference. 
6) Capture general recommendations for moving forward with NMFS EM and future 
NEMoWs/NEMoW working groups (e.g., Atlantis Summit, Economic and Ecosystem Modeling). 
 

Results 
 
The participants discussed the types of MMI, the reasons for doing MMI, and the benefits of 
doing it. In addition, participants outlined the generally used methodologies for MMI and how 
they may be used in ecosystem approaches to LMR context.  In addition, a set of best practices 
and recommendations were developed from this discussion.  These workshop results are 
presented in this section.  The remainder of the report provides abstracts and detailed 
summaries of presentations and discussions that led to these results. 
 

MMI and the types of MMIs 
Broadly defined, MMI is the application of multiple quantitative representations (models) of a 
system in an effort to improve the understanding of how a given system works.  The models 
used may vary only slightly with different initial parameters being used or with different 
structural configurations of parts of the model.  Alternatively models with very different 
structures and parameters can be used.  The practice of using models enables the range of 
uncertainty in initial parameters and in model structure to be accounted for when considering 
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results and conclusions drawn from the models.  This practice has been used extensively in 
other fields such as weather prediction, climate science, and social sciences, and has helped to 
advance those fields and improve the utility of their models. 
 
To consider MMI, first, a broad, general description of the types of modeling approaches used 
in all scientific fields should be considered. Table 1 gives a broad classification of models. 
 
Table 1. Broad classes of models used in all scientific fields. 

Type Description 
Statistical  Model projections or assessments are based on previous 

patterns observed in nature. What “normally occurs” 
Dynamical (or Simulation) Based on simulating first principles.  Solves equations based 

on fundamental physical, chemical and biological laws and 
principles. 

Hybrid (Statistical-Dynamical) Linked Statistical and Dynamical. Statistical relationships 
may be used to force components of a dynamical model, or 
dynamical models may be used to estimate input 
parameters for a statistical model. 

 
 
Secondly, to consider MMI, a broad understanding of the current types of multiple model 
methods is necessary. Table 2 gives a broad classification of multi-model methods. 
 
 
Table 2. Methods for combining and comparing multiple models. 

Type Description 
Qualitative Comparison Models outputs are not averaged or combined 

quantitatively. Results are compared to explore the range of 
possible outcomes. 

Consensus   Average output from other models with some weighting 
options 

Ensemble  A collection of models run with slightly different initial 
conditions or methods of processing, presents range of 
possible outcomes 

 Can be multi-model ensemble or single-model ensemble 
Single-model ensemble  Model run many times at reduced resolution, with 

perturbed initial conditions, or altered structures of some 
component of the model. Also known as Sensitivity analysis. 

Multi-model ensemble Model suite that contains several models, less sophisticated 
models, and consensus models. 
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These broad classifications informed the discussion as to how MMI can be more formally 
applied to models for LMR management. 

Reasons for and Benefits of MMI 
For ecosystem models used in LMR management, considerable structural uncertainty exists. 
This uncertainty is in part attributable to uncertainty in our understanding of the underlying 
ecological processes and how to best quantify those processes. Additionally, uncertainty in the 
input parameter estimates results in uncertainty in the outputs of the model. 
 
 The structural uncertainty can be dealt with by either 1) choosing a model that is determined 
to be the “best” model through some model selection process or 2) use multiple models for 
analysis.  Using the “best” model tactic can be problematic because the model may have been 
developed under one set of environmental conditions and as those conditions change, the 
“best” model may not adequately capture those conditions. Similarly, a certain model may be 
best in one aspect, such as reproducing the dynamic properties of a system but not the best in 
reproducing specific events. Often using the “best” model may lead to low-utility management 
advice. 
 
The use of multiple models is becoming the most widely used tactic for applying models to 
solve problems. Multiple models and sensitivity analysis (i.e., single model ensembles) can be 
used to account for the structural uncertainty and parameter uncertainty of models and enable 
a consideration of a range of possible outcomes.   
 
In addition to multiple modeling approaches, structural uncertainty can be addressed by 
exploring a range of management actions and their outcomes. This is commonly done using use 
closed-loop simulations (management strategy evaluations, or MSEs).  The combination of 
multiple modeling approaches, single model ensembles, and MSEs will help account for a wide 
range of uncertainty. This combination should reduce the likelihood that a manager would be 
blindsided by an unexpected result of a management action. In other words, the conversation 
between scientist and managers is focused on the best action to take given the range of 
possible outcomes, rather than the best model to use. 
 
Beyond these general reasons for and benefits of MMI, the invited presenters noted that, in 
their disciplines, MMI is used regularly and has resulted in considerable improvement in model 
projections and forecasts (e.g., reduction in the uncertainty in estimates of hurricane strength 
and trajectory, reduction in the uncertainty of climate projections, and reduction in the 
uncertainty of ocean circulation patterns).  These model upgrades have improved the advice 
given to a wide range of stakeholders including emergency planners, the IPCC community of 
stakeholders, and oil spill response teams. 
 
The presenters also noted that the rapid improvement in advice provided to management from 
MMI was in part attributable to models being used to assess how to improve data collection 
and the resultant improvements in data collection systems. 
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In summary using MMI has many benefits.  They include: 
• Evaluation: Use as a diagnostic tool to improve understanding and identify 

model/observation deficiencies 
• Effectiveness: Improve accuracy and robustness over single model methods 
• Efficiency: decompose complex problems into multiple sub-problems that are easier to 

understand and solve 
• Error Reduction: combine diverse, independent models to reduce uncorrelated 

prognostic errors 
 
However, when using MMI these requirements need to be met: 

• Adequate Models: Models need to represent real-world 
o Do we understand processes? Are they adequately modeled? 

• Adequate Data: Need data to validate and improve models 
o Do data exist to adequately validate/constrain models? 
o Can models help identify gaps in data and understanding? 

• Adequate Diversity: Need adequate diversity of models 
o For multi-model approaches, are there enough models for an issue or an 

ecosystem to develop a robust ensemble? 
 

Generally used MMI Methodologies 
Within the broad classification of MMI approaches described above, specific methodologies 
have been developed or are being tested.  Some of these methodologies and the disciplines in 
which they are commonly used are outlined based on the MMI classification in Table 2 and 
discussed below. 

Qualitative Comparison 
One approach to using multiple models is to run each model separately and present results for 
each to an expert or group of experts.  The group of experts can select the output from “best 
model” to be used for final presentation to stakeholders.  The group of experts can use their 
knowledge of the system to ascertain which model performs best given the current conditions 
being modeled.  This forms the basis of advice to be passed on to stakeholders or policy-makers 
for making a decision on actions to be taken. This approach is analogous to a weather 
forecaster reviewing outputs from multiple models (and ensembles) to develop a forecast 
statement. 
 
Rather than relying solely on the expert judgment of modelers, results from multiple models 
can be presented to a group of stakeholders. This approach has the advantage that it allows 
transparency in the science for decision-making.  This can also be a disadvantage in that 
stakeholders may not have the level of subject or quantitative expertise that modelers have.  
Rather than making objective decisions from model advice, stakeholders may consider the best 
model to be the one that fits their preconceived notions (mental models). 
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Variations on these approaches include the following: 
- Formal expert judgment approaches (e.g., Delphic Method) 
- Presenting ranges of model output 
- Presenting the central tendency model and extreme models 

 
Qualitative comparisons have been employed by a few science centers (e.g., Alaska). Results 
from single species and multi-species models are often include in management plans to 
demonstrate the variability in biomass estimates when ecosystem interactions are considered. 
 

Consensus Methods 
Model output is averaged output from other models with some weighting options. This is not a 
model per se but rather combinations of other models. This can be a simple average or it can be 
more complicated, where past performance is used to correct biases or optimize combinations. 
Consensus models generally outperform their component individual models. The more 
independent the individual models are, the better the consensus does. 
 
Consensus methods are commonly used by tropical cyclone modelers to reduce forecast error.  
In an effort to move towards ecological model ensembles, the International Council for 
Exploration of the Seas developed a workgroup to test these methods, and it is working 
towards establishing Biological Ensemble Modelling Approach (BEMA).   
 
BEMA is a tool under development to study the impact of model structure and ensemble 
averaging on responses to climate change and fishing. This approach is designed to answer the 
following questions: 
-  How does variation between models of different complexity influence model results? 
-  What are the causes of variation between models (e.g., structure, methodology)? 
-  What is the effect of ensemble weighting and composition? 
-  Are general conclusions across models possible? 
 
At this stage, BEMA has focused on presenting a range of outputs and identifying common 
trends among models. More detailed information on BEMA is given in the Abstract and 
Summaries of Plenary Speakers section of this report. 
 

Ensemble Models 
One way to create an ensemble is to change initial conditions, and rerun the same model -    
use a single model with a variety of configurations.  This can be used to test determinism vs. 
non-determinism of the system.  The level of non-determinism could then be used to develop 
improvements to the model and data streams.  
 
Another approach for ensemble modeling is to use multiple diverse models that are trained on 
the same problem. It is best to have multiple forecasts, from separate model types, in most 
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cases. Another best practice is to plot model mean and prediction variance around that mean, 
to demonstrate where they diverge.  
 
To combine results from the alternative models with or without weightings requires skill 
assessment. Models that perform better can be weighted more heavily in an ensemble. In 
addition, some models can be discarded if rigorous statistical methods are applied by fitting 
them to data for a given system.  
 
Ensemble modeling approaches in oceanography are based primarily on averaging methods.  
These methods include: simple means, means with individual bias corrections, means with 
collective bias corrections, regularization, and Bayesian Model Averaging (BMA).  

BMA is a more formal procedure that has proven useful. BMA considers an ensemble of 
plausible models. Models vary in skill; calibration of this skill produces better forecasts. This 
approach works well in short-term weather prediction. About six or more models are needed 
for this approach. 

Typically in ocean modeling, there is a learning period over which weights across models are 
optimized, then a forecast period uses those weights. Generally this will lead to better model 
performance. Ocean modelers use Whole Domain weighting, and 3D weighting, to allow 
weighting scheme to evolve to favor the strongest models.   
 

Summary of MMI Approaches 
 
A range of approaches from simple qualitative to complex ensembling are available and have 
been used in oceanography, climatology and meteorology for a few decades. The range of MMI 
approaches and the applicability of those approaches are summarized in Table3.   
 
MMI for ecosystem modeling is in its early stages, and has thus far been limited to qualitative 
and consensus approaches. To move towards more complex ensemble methods will require 
higher frequency data streams and model skill assessment. 
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Table 3. Overview of MMI approaches with notes on the applicability of the approaches 

Type of MMI 
approach 

Degree of 
relative Data 
Needs (Low, 
Moderate, 
High) 

Most appropriate under conditions 
related to: 
Data level, model complexity, number of 
functional/structural forms, precision 
uncertainty, process uncertainty, etc. 

Risk considerations, (Being 
wrong relative to magnitude 
of impact; Low, Moderate, 
High) 

Qualitative Low Data poor, high uncertainty High risk of missing 
something 

Delphic Low Low data High 
Ranges Low-

Moderate 
Too many models, unclear processes, high 
process uncertainty 

Moderate 

Central 
tendency 

Low- 
Moderate 

Reasonably model precision, but uncertain 
processes 

Moderate 

Consensus  Precision and process uncertainty at  least 
moderate data 

Low-Moderate 

Model averaging 
 

Low- 
Moderate 

Structure uncertainty, when no models 
are presenting extreme results 

Moderate-High; averaging 
may hide qualitative 
differences and result in 
missing extreme events (e.g., 
extinction). 

Data 
assimilation 

Moderate -
High 

High data, reasonable process certainty, 
reasonable precision, range of  model 
complexity 

Low; incorporating new data 
within a model run enables 
course correction. 

Ensemble  Multiple models, many levels of 
complexity, high process uncertainty 

 

Single model    
Single model- 

parameters 
Moderate Parameter uncertainty Low- Moderate 

Single model- 
structure 

Moderate Structural uncertainty Moderate 

Multiple models    
simple means Low- 

Moderate 
Structural uncertainty Moderate 

means with 
individual bias 

correction 

Moderate Structural uncertainty and precision, when 
data are available to determine model 
bias 

Moderate 

means with 
collective bias 

corrections 

Moderate Structural uncertainty and precision, when 
data are available to determine model 
bias 

Moderate 

regularization  Moderate-
high 

Structural uncertainty and precision, when 
data are available to determine model 
bias 

Low-Moderate 

Bayesian Model 
Averaging 

(BMA) 

High Structural uncertainty and precision, when 
data are available to determine model 
bias; requires a time series and a history of 
model runs to develop priors 

Low-Moderate 
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Application of MMI to Ecosystem Approaches for LMR management 
In some cases, simple approaches to MMI are already being used in a broad range of contexts.  
Most stock assessment and ecosystem model applications use sensitivity analysis (i.e., single 
model ensembles) implicitly.  A more formal application and recognition of these approaches 
would help advance MMI within NMFS. 
 
In applying MMI, several factors must be considered. The primary factor is the context in which 
the model is being used. Another major factor to consider is how common metrics form the 
outputs for a diversity of model types. 
 
Generally ecosystem and habitat modeling approaches are simulation models. For ecosystem 
and habitat assessment, MSEs are commonly used and stakeholders are accustomed to seeing 
outputs from multiple management scenarios. Thus, this context is conducive to the use of 
qualitative comparisons where stakeholders are presented multiple model outputs for multiple 
scenarios.  The BEMA methodology provides a good example of how to implement this 
approach. 
 
Stock assessment and population assessment for protected resource models are generally 
statistical models that have some measure of model fit to past data. While model-fitting is not 
the same thing as skill assessment used for evaluating model performance in other disciplines, 
it is similar in that metrics of model fit (e.g., Bayesian Information Criterion, Akaike Information 
Criterion) are calculated. As such, model-fit metrics may be used to develop weighting schema 
and use model averaging to create model ensembles.   
 
As most NMFS regions have a diversity of single-species, protected resources, habitat and 
ecosystem models, the potential to use these for ensemble exists. These models could be used 
in ensembles to develop biological reference points (BRPs) and for assessing the BRPs. This 
would require an evaluation of the BRPs across mandates and the development of common 
metrics or indicators. 
 
The ability to use MMI evolved in the oceanography, climatology and meteorology disciplines 
and a similar track can be used to advance the application of MMI in LMR management. 
Applying advanced MMI techniques such as multiple model ensembles requires skill 
assessment.  Skill assessment can be used to weight models for model ensemble and to make 
decisions on the best type of weighting methodologies to use. 
 
This advancement was relatively easy for climate, weather and ocean models, because physical 
and ocean observations for evaluating models are collected frequently (daily to hourly).  
Ecological data is not collected as frequently (monthly to annually).  For ecological models, 
other methods of skill assessment will have to be implemented so that appropriate weighting 
methodologies can be applied for multiple model ensembles. 
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For ecological models, skill can be evaluated using "operating models" of assumed hypothetical 
true systems to determine how sensitive the bias and precision of parameter estimates are to 
changes in structure of the estimation or simulation model. The actual structure of large 
ecological systems is unknown, so such analyses would have to be repeated across a large 
number of sensitivity analyses that use different hypotheses about that true structure in the 
operating model.  
 

Conclusions 
 
The overarching conclusion from the participants of NEMoW3 was that NMFS should proceed 
with MMI for LMR modeling and management with a few caveats. In data poor assessments, it 
may not be practical to develop multiple models with adequate variety in structure.  However, 
in other instances, NMFS modelers are already doing MMI.  Sensitivity analyses (i.e., single 
model ensembles) are commonly used across LMR modeling and management contexts.  
 
MMI is used regularly in many other disciplines especially within NOAA (e.g., weather, climate 
and ocean modeling).  Within those fields, MMI has brought about vast improvements in 
forecasting ability and system understanding. In those fields, modelers began to learn how to 
do MMI by just doing it and learning from their mistakes.  The group consensus was that 
ecosystem modelers should just begin MMI where possible and work together to share results 
and techniques. 
 
As we move forward with MMI for LMR management, modelers are advised to follow the best 
practices listed below. In addition, the recommendations listed below will allow the 
advancement of MMI and improvement in scientific advice for LMR. 

Best Practices 
 

1) Clearly define the management objectives and type of management advice targeted by 
the models (i.e., strategic or tactical).   
 
The need for clearly defined management objectives was reiterated from a previous 
NEMoW.  With the added complexities of using multiple models, the need for early 
engagement with stakeholders is even more crucial. With additional input and 
discussion on social sciences during this workshop, a few suggestions emerged on how 
to work collaboratively and iteratively with stakeholders to develop models and 
understand their mental models.  These approaches should help with stakeholder buy-in 
and help them understand the need for multiple models and the uncertainty involved 
with each modeling approach. 
 
A clear understanding of the type of advice needed (strategic vs. tactical) will inform 
how to implement MMI and communicate its results.  For example, for tactical advice, 
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formal statistical estimates of uncertainty based on weighted model ensembles may be 
needed.  For strategic advice, summary tables from MSEs using multiple models and 
BEMA type approaches may be used. 
 

2) Use an appropriate range of MMI analytical or quantitative approaches: single models 
with different assumptions, structures and initial conditions, and multiple models with 
considerable variability in structure and assumptions. 
 
In cases where only one model is available, single model ensembles (i.e., multiple runs 
with variations in the initial conditions or parts of the model structure) can be used. 
Ideally, multiple models with very different structure and assumptions would be used.  
The group noted a need to develop and include ecosystem models with factors other 
than trophic interactions at the core.  For example, models with disease, coastal habitat, 
etc. will be necessary for better incorporating other stressors influencing LMRs. 
 

3) Evaluate model performance/forecasting skill to enable weighting schema to be 
developed and used for formal model ensembles.  Furthermore, skill testing will help to 
inform and improve data collection for improving models. 
 
Many of the participants expressed a desire to have ecosystem models used in a tactical 
sense to produce reference points. Developing weighting schema based on skill testing 
would enable strong inference based on model averaging. 
 
The group recognized that, within other disciplines, skill testing was relatively simple 
because models are run on a very regular basis (daily and more frequent) with data 
available on a similar basis.  For LMRs, model runs are less frequent (usually annually) 
and new data are typically only available on a monthly to annual basis.  As a result, skill 
evaluation using operating models as “truth” will be necessary. 
 

4) Use social science considerations as part of the MMI evaluation process and in 
communicating the results from MMI processes. 
 
The group expressed a need to be able (and prepared) to communicate potential for 
complex response surfaces to managers.   One approach for doing that is to present 
more aggregated (and likely more stable) outputs and then drill down into the more 
complex details. 
 
Many of the participants were concerned about the possibility that using multiple 
models would enable stakeholders to pick the model that best fit their desired 
outcomes. One suggestion was to use mental models (e.g., fuzzy logic cognitive maps) as 
a framework for communicating to managers and stakeholders, as a means for people 
to think about things in the same way and recognize others’ perspectives. 
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Beyond social science considerations, the participants recognized a need to incorporate 
social science models within a range of models for MMI.  As humans are drivers of 
ecosystems (i.e., the social-ecological system), understanding human responses to 
changes in ecosystem and how that, in turn, influences the ecosystem may be 
important. 
 

5) Where MMI is being implemented implicitly, begin to explicitly demonstrate that MMI is 
being used. 
 
Many of the modelers indicated that they use MMI regularly. For example, stock 
assessment modelers often perform sensitivity runs (i.e., re-run the model with 
different initial conditions, alterations to the structure, with and without external 
ecosystem considerations).  Sensitivity runs are analogous to single model ensembles.  
Some additional work may be necessary to formalize this approach as true MMI. 

 
 

Recommendations 
 
1) Adopt MMI best practices (described above). 
 
The best practices describe previously were generally agreed upon by a representative group of 
ecosystem modelers within NMFS. This group and this report can be used to spread the best 
practices to other modelers and encourage the use of these practices. 
 
2) Perform simulation studies to evaluate the skill of models to be used for MMI.   
 
The group recognized that within other disciplines skill testing was relatively simple because 
models are run on a very regular basis (daily and more frequent) with data available on a similar 
time scale.  For LMRs, model runs are less frequent (usually annual) and new data are available 
on a monthly to annual basis. This lower frequency of model runs and data availability 
necessitates other approaches for evaluating model skill. 
 
Participants recommend a working group to develop methods for model skill evaluation.  The 
methods would test a full range of ecological models (single-species fisheries/protected 
resources, habitat and ecosystem models) more formally, usually in part of mitigating some 
type of pressure or use. The general approach suggested was to develop a holistic operating 
model that simulated a generic ecosystem and other models would use simulated data from 
that model for development and skill assessment.   
 
The operating model would be used to run a variety of pertinent scenarios (climate, overfishing, 
etc.) to generate new survey data.  The test models would be used to produce predictions 
under the scenarios and compare test models’ outputs to the operating model’s simulated 
data.  The working group would develop model performance metrics, the test models would 
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then be compared using these performance metrics. This evaluation would provide a basis for a 
general weighting schema for commonly used ecosystem models.  This schema could be 
adopted by the centers for future MMI applications. 
 
3) Evaluate cases where MMI has been attempted by NMFS for LMR management. 
 
The group agreed that we should develop NMFS-relevant case studies for testing ensemble 
models and MMI. This could be accomplished with a working group or through a subset of the 
NEMoW participants developing a white paper. 
  
The group agreed that, before formal weighting schema are developed, case studies might be 
focused on strategic management (e.g., an MSE context). Given the broad array of LMRs and 
mandates in NMFS purview, it is important that case studies illustrate MMI application across 
mandates (e.g., fisheries, protected species, habitat, National Environmental Protection Act – 
NEPA).  
 
Some case studies may use multiple models.  Others may be focused on single model ensemble 
approaches - running different parameterizations and exploring different process structures or 
different initial conditions. In case studies, where the possibility of using multiple models exist, 
it is important to use models with as many different structures as possible to provide 
information on the utility of simple vs. complex models. 
 
Within these case studies, risk assessment should be applied so that the outcomes are 
appropriate to the management question involved (is it a resource where susceptibility to rare 
stress/pressure events is significant to sustainability?, etc.). This may demonstrate that MMI 
approaches for combining and displaying model results may vary among contexts.  
 
4) Develop and maintain EM and MMI capacity and infrastructure. Specific recommendations 
are outlined below. 

 
o Assess and develop efficiencies with MMI. 

 Consider all 500+ fish stocks, 100+ marine mammal populations, 1000+ 
habitats, aquaculture species, the 20 LMEs, and the countless coastal 
areas that NMFS has to deal with. 

 Assess the possibility of combining current approaches (single-species 
models, multi-species models, EM) rather than building new models from 
scratch.  (Cost-benefit analysis up front).  

 Three-front approach:  1) assessing data availability and tapping currently 
untapped resources; 2) computing resources; and 3) basic understanding 
that is constantly advancing in concert with model development. 

o Develop training capacity for EM and MMI. Train and educate, internally and 
externally, when new practices, methods, standards or products are put into 
practice. 
 Generate smaller working groups across Centers to share expertise and 
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experience on MMI. 
 Build collaboration within the NMFS research community. 
 Find ways to blend stock assessment scientists and ecosystem scientists 

(working groups, research teams, etc.) so they have the opportunity to 
integrate the MMI approach with traditional fisheries approaches. 

 These training objectives could be achieved in NEMoW working groups. 
o Build computing infrastructure at the agency level. 

 Develop capacity for more efficient data reporting and transfer. 
o Develop standardized reporting of MMI predictions:  averages and error, with 

the individual models available for transparency of alternative outcomes.  IPCC 
and BEMA provide useful examples.  

Beyond these recommendations specific to MMI for EM, the participants recommended that 
NEMoWs should continue to promote application and development of a wide range of 
ecological models to ensure the best available science is being used to meet NMFS mandates.  
For example, future NEMoWs could be held to develop more formal MSE capacity agency-wide, 
across multi-disciplinary teams.  Specifically, use multiple, ecosystem and multi-species models 
to set up Harvest Control Rules (HCRs) for fishery stocks, marine mammal and protected 
resource populations. Simpler models/data streams would be used for short-term forecasts 
(e.g., allowable catch limits, population viability analysis) against those HCRs. 
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Abstracts and Summaries of Plenary Presentations 
 

Summary of Introduction and Opening Remarks by Dr. Jason Link, NMFS 
Senior Scientist for Ecosystem-based Management 
Jason Link began by welcoming all participants from NMFS Science Centers and other offices, 
other NOAA line offices, as well as invited guest observers and speakers. 
 
Link reviewed the general objectives of the NMFS NEMoWs and provided some historical 
background on the origin of NEMoWs, why NEMoWs are still needed, and what we aimed to 
achieve at NEMoW 3. 
 
In the opening remarks, he noted that NEMoW began as a bottom-up, grass-roots organization 
when a small group of modelers, who were beginning to develop models and apply them to 
LMR issues began to make contact with one another swapping ideas and information on best 
practices for implementing models into management. The group noted that it would be 
beneficial if they convene a forum where everyone involved at various stages of EM could 
convene.  Bringing together these folks would enable more rapid development of models and 
advancement of new technology and approaches, as well as help set the stage to develop best 
practices for modeling and its application to LMR management.     
 
In 2007, at the NMFS Santa Cruz Lab and with the support of NMFS and the Science Board, the 
1st NEMoW was held. At that workshop, the participants developed an inventory of what 
models were being used and for what objectives. The participants also heard from external 
speakers (ecosystem modelers) who helped the group layout best practices for applied EM for 
LMR.  At that time, only one out of seven centers had dedicated ecosystem groups; now, three 
to four centers have dedicated ecosystem groups. 
 
In 2010, a 2nd NEMoW was held to address issues on bridging the credibility gap – handling 
uncertainty – in EM.  In that workshop, centers provided updates on their modeling efforts and 
applications for LMR management.  In addition external speakers helped the group develop a 
framework for considering all of the levels of uncertainty in EM (and resource modeling in 
general).  In that workshop, the need for using multiple models to address uncertainty was 
raised.  Hence, this 3rd workshop was convened to develop recommendations and best 
practices for using multiple model inference as a way forward. 
 
After providing this context and background on the general purpose of NEMoW, Link set the 
stage for this workshop, he noted the following:   

1) EM is moving from research toward more operations and application;   
2) NMFS LMRs face a broad array of pressures beyond fishing and the need to address 
those stressors with models is expanding;  
3) The levels of Ecosystem Management for which EM are applied is growing; 
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4) As EM comes to be used more operationally, modelers need to think about how the 
models can and should be applied in a variety of LMR processes 

 
As EM has moved from research to applications and operations, it has also begun to be used 
not just in a strategic sense (i.e., Management Strategy Evaluation) but also in a tactical sense 
(e.g., developing ecosystem-savvy single species or ecosystem-based reference points). 
Modelers need to consider how we use these models, whether they are used for tactical vs 
strategic advice, and how to move EM from mostly research to giving operational advice. 
 
The need for EM in LMEs and subregions of the LMEs is expanding as many LMRs face many 
pressures, not just fishing (Table 4).  LMRs are facing not just many pressures but cumulative 
pressures with complex interactions.  EM approaches are necessary to account for these 
pressures and interactions to provide useful LMR advice. 
 
The relative importance of the pressures and resources in Table X vary from region to region 
and within subregions, so each Center’s needs for modeling may vary according to the 
pressures.  However, there are some topics of national interest that should be considered by all 
regions as they develop and apply EMs.  Some topics of current interest nationally are:  

• Climate change, Ocean Acidification, National Climate Science Strategy (NCSS) 
• Habitat, Habitat Assessment Improvement Plan (HAIP) 
• Forage 
• Cumulative Impacts, Integrated Ecosystem Assessment (IEAs) 
• Stock Assessment Improvement Plans (SAIP), Next generation stock assessments (NGSA) 
•  Protected Species Stock Assessment Improvement Plan (PS-SAIP) 
• Risk Analysis, Multi Criteria Decision Analysis (MCDA) 
• Data visualization 

 
For LMRs, a need for three levels of Ecosystem Management exists.  Those levels are 

• Ecosystem Approaches to Fisheries (EAF) – Adding ecosystem factors into stock 
assessments for tactical management decisions 

• Ecosystem-based Fisheries Management (EBFM) – strategic and tactical management to 
consider trade-offs within fisheries and other marine animals stocks 

• Ecosystem-based Management (EBM) – strategic management to consider not just 
trade-offs within fisheries and other marine animals but within and among other sectors 
by using IEAs. 

Modeling approaches to address all three levels should be considered in developing and 
applying EMs. 

Within the different types of LMR management (e.g., fisheries, protected species, habitat) a 
variety of processes for incorporating scientific information and advice exist.  Though there is 
some variability in the processes; the basic process is as follows:  
1) Data – collect data to address the issue; 
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2) Modeling – synthesize the data in a way that is meaningful for addressing an issue; 
3) Review – evaluate the possible approaches for addressing the issue; 
4) Status determination – determine whether an issue should be addressed and how it should 
be addressed; 
5) Performance review – evaluate whether the management objective achieved the desired 
outcome and why or why not? 
 
To make models more operational for LMR management, modelers should consider the process 
in which their models are being used and how to make the model best fit the need. 
 
A range of ecological models are needed and used in management – from single species to full 
system.  Which type of model to use, in some way, is determined by the need.  Because a 
variety of models are currently being used and developed in the centers, some infrastructure 
for developing MMI is already in place. 
 
To wrap up his opening remarks, Link outlined the need for MMI and stated the charge for the 
workshop. MMI is needed because, ultimately, all models are wrong.  By necessity, because of 
the complexity of ecological systems, some aspects of a system are simplified by ecological 
models.  If just one model is used, the model can be mistakenly viewed as “truth” about the 
system and lead to myopia.  This can have negative consequences; if the relative importance of 
simplified portions of a modeled system begins to change over time in the actual system. MMI 
is an approach to address uncertainty, and it is an approach that has been used successfully and 
commonly in other fields.  MMI allows one to consider and even incorporate different 
views/assumptions of data and underlying structure/process/functional form. Multiple models 
allow a broader consensus upon reaching “the right answer” to an issue versus “the right 
model” to address the issue. 
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Table 4. Focal LMRs of NMFS based on national mandates and range of pressures they face. 
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Target Stocks                                           

MSA, etc.                                           

Stock Assessments                                           

Protected Species                                           

MMPA, ESA, etc.                                           

SRGs, Section 7                                           

Aquaculture                                           

NAA, CZMA, etc.                                           

Permitting, Siting Reviews                                           

Habitat                                           

CWA, CZMA, ESA, MSA, etc.                                           

Permitting Reviews                                           
Ecosystem and Aggregate 
Properties                                           

NEPA, MSA, cross-mandates                                           

cumulative impacts, IEAs                                           
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Extended Abstracts on EM and MMI efforts at NMFS Centers 

Ecosystem modeling efforts at the NOAA/NMFS Alaska Fisheries Science Center 
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Kerim Aydin 
Alaska Fisheries Science Center 
Seattle, WA 
 

Food web modeling 
 
Scientists with the (AFSC) Resource Ecology and Ecosystem Modeling (REEM) program 
previously developed mass-balance food web models of large marine ecosystems (LME) in 
Alaska, including the eastern Bering Sea, Gulf of Alaska, and Aleutian Islands. These food web 
models are updated frequently and are used regularly in fishery management advice in annual 
Stock Assessment and Fishery Evaluation (SAFE) reports.  Recently, this suite of models was 
expanded with the completion of a model of the Chukchi Sea.  Using the same food web 
modeling framework, the researchers focused on a set of network metrics to draw comparisons 
with nearby subarctic ecosystems—the eastern Bering Sea and Gulf of Alaska, and a more 
distant Arctic ecosystem, the Barents Sea. 
 
The Chukchi Sea is a seasonally ice-covered, peripheral sea of the western Arctic Ocean. It lies 
north of the Bering Strait off the northwestern coast of Alaska.  Comparison of the network 
metrics highlights distinctions that lead to the eastern Chukchi Sea having the lowest total 
production/biomass (P/B) ratio of the systems examined; the P/B of the nearby eastern Bering 
Sea was about double that of the eastern Chukchi Sea. In practical terms, this characteristic 
implies that the eastern Chukchi Sea is fundamentally different from the adjacent eastern 
Bering Sea – they have roughly comparable total biomass density but the total production of 
the Chukchi Sea is 45% that of the eastern Bering Sea. Thus, the standing biomass in the 
Chukchi Sea is not expected to be highly resilient to commercial fishing or other high-mortality 
events such as that which might be expected following a large-scale oil spill. Further research 
into the production of species/functional groups and their response to extraction or 
disturbance could be useful for evaluating the impact of future fisheries on the food web and 
predicting response to potential environmental disturbances related to energy extraction. 
 

Multispecies Statistical Modeling 
 
Recently, model runs have been completed for the Bering Sea using a 10km2 Regional 
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Ocean Modeling System (ROMS) model coupled to a Nutrient-Phytoplankton-Zooplankton 
(NPZ) model to produce detailed hindcasts for the period 1970-2012 and forecasts using 
IPCC scenarios through 2040. These results drive a climate-driven Multispecies Statistical 
Model (MSM) for use in a management strategy evaluation of three groundfish species from 
the Bering Sea (walleye pollock, Pacific cod, arrowtooth flounder). First, ROMS model 
results modulate bioenergetics, food supply, growth, recruitment, and species overlap (i.e. 
functional responses and predation mortality) as fit in the MSM using hindcast-extracted 
time series.  Then the MSM model is applied to downscaled IPCC climate projections via a 
ROMS and NPZ model projection of temperature, circulation, and zooplankton abundance. 
Results of model simulations have helped REEM scientists understand and predict how 
future climate driven changes to the system may impact predation and fishery harvest 
limits. 
 
For this approach, recruitment estimates were first derived from a multi-species stock 
assessment models (MSM) fit to historical survey and fishery data. The model was run in 
multi-species mode, where each species is linked through a predation sub-model, as well as 
in single-species mode, where no predation interactions occur. This produced a time-series 
of spawning stock biomass and recruitment from the multi-species and single-species 
models.  ROMS model estimates for mean water column temperature and spring and fall 
zooplankton biomass were then used as covariates on a Ricker stock recruitment curve, 
such that: 
 

𝑙𝑙𝑙�𝑅�𝑝,𝑦� =  log�𝛼𝑅,𝑝 ∙ 𝑆𝑆𝑆𝑝,𝑦−1� − β𝑅,𝑝 ∙ 𝑆𝑆𝑆𝑝,𝑦−1 + β𝑍,𝑝
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Where 𝑅�𝑝,𝑦 is estimated recruitment in year y for species p, 𝑆𝑆𝑆𝑝,𝑦−1 is the spawning stock 
biomass from the multi-species model, 𝑍𝑦

𝑠𝑠𝑠 and 𝑍𝑦
𝑓𝑓𝑓𝑓 are the total spring and fall 

zooplankton biomasses predicted from the ROMS/NPZ model for the Bering Sea, 𝛿𝑝,1,𝑦
𝑓𝑓𝑓  is 

the ration of the youngest age class for each species, and 𝛼𝑅,𝑝, β𝑅,𝑝,β𝑍,𝑝
𝑠𝑠𝑠 , β𝑍,𝑝

𝑓𝑓𝑓𝑓 are 
parameters of the recruitment function fit through maximum likelihood to recruitment 
from the multi-species model (𝑅𝑝,𝑦) such that 𝜀~𝑁(0,𝜎2). Model estimates were compared 
via AIC and top models for each species were selected for use in projections of the multi-
species model under future climate scenarios from ROMS/NPZ projections based on down-
scaled IPCC climate model scenarios (Fig. 1). 
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Figure 1. Projected spawning stock biomass for walleye pollock predicted from single (a) and 
multi-species (b) modes of MSM under various recruitment relationships and no harvest (“SSB 
unfished”; dashed line) or harvest that yields 40% of SSB on average during the last five years 
(2045-2050) of the projection (B40%; solid line). 
 
 

End to End modeling 
 
The Forage and Euphausiid Abundance in Space and Time (FEAST) model is a length based, 
spatially explicit bioenergetics model, that comprises the fish portion of the vertically 
integrated model of the North Pacific Research Board’s Bering Sea Integrated Ecosystem 
Program (BSIERP). The vertical model itself contains 5 modules: climate, oceanography (ROMS), 
lower trophic levels (NPZ), fish, and fisheries (FAMINE). FEAST models 14 fish species linked to 5 
zooplankton groups (Fig. 2) and 20 fisheries specified by sector, gear and target species. Species 
include walleye pollock, Pacific cod, arrowtooth flounder, salmon, capelin, herring, eulachon, 
sandlance, myctophids, squids, shrimp, crab, epifauna, and amphipods; these have a two-way 
interaction with six groups from the Nutrient - Phytoplankton - Zooplankton (NPZ) module: 
small copepods, oceanic/shelf copepods, oceanic/shelf euphausiids, and benthos.  Temperature 
and advection estimates from the physical oceanography portion (ROMS) are used in the fish 
bioenergetics and movement components. The model has a spatial resolution of approximately 
10 Km and will be run both with past climate (1970-2010 hindcast) and three different climate 
projections stemming from three different climate models. In addition, FEAST is the “real 
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world” model to be used in a Management Strategy Evaluation for walleye pollock and Pacific 
cod, two of the main commercial groundfish in the Bering Sea. 
 
 
 
 

 
 
  
 
Figure 2. Food-web underlying FEAST, showing level of detail for the groups modeled. Lines 
depict trophic flows, line thickness is proportional to magnitude of flow and color represents 
pelagic (green) or benthic (blue) routes. 
 
 
 

Individual-based modeling 
 
Groundfish recruitment in the Gulf of Alaska is thought to be controlled by physical processes 
(i.e. climate and transport) and biological processes (i.e. growth and predation) experienced 
between offshore spawning sites and the end of the young of year (YOY) stage. As part of the 
North Pacific Research Board’s Gulf of Alaska Integrated Ecosystem Research Program 
(GOAIERP), AFSC modelers are using a Regional Ocean Modeling System (ROMS), a Nutrient-
Phytoplankton-Zooplankton (GOANPZ) model, and Individual-Based Models (IBMs) to examine 
recruitment mechanisms and derive indices related to recruitment for five ground fish species; 
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arrowtooth flounder, walleye pollock, Pacific cod, Pacific Ocean perch, and sablefish. The work 
will also incorporate the indices into the existing Ecosim model of the Gulf of Alaska to explore 
the consequences of recruitment variability on the GOA ecosystem and fisheries. Indices 
produced, and conclusions about the effects of physical and biological processes on the GOA 
ecosystem under different physical regimes will aid in the management of these important fish 
stocks. 
 

Ecosystem modeling efforts at the NOAA/NMFS Northeast Fisheries Science 
Center   
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Michael Fogarty, Sarah Gaichas, Robert Gamble, Sean Lucey, Erik Olsen 
Ecosystem Assessment Program 
Northeast Fisheries Science Center 
Woods Hole, MA 
 

Prototype Multispecies Bio-economic Analysis for Georges Bank 
 
Development of multispecies and ecosystem models has an extensive history at the Northeast 
Fisheries Science Center (NEFSC). Here, we focus on one element of current NEFSC modeling 
efforts designed to support Ecosystem-Based Fishery Management (EBFM).  Other initiatives 
not explicitly covered here span the spectrum from development of extended single-species 
models to application of end-to-end ecosystem models to evaluate requirements for the 
broader dimensions of marine ecosystem-based management.  
 
Both the New England and Mid-Atlantic Fishery Management Councils have recently signaled 
their intent to explore and implement options for EBFM. The Ecosystem Assessment Program 
(EcoAP) of NEFSC has worked closely with the Scientific and Statistical Committees of both 
councils to develop options for EBFM tailored to the emerging management preferences of 
each council.  In collaboration with the Population Dynamics, Oceanography, and Social 
Sciences Branches at NEFSC, EcoAP has been exploring options for development of a flexible 
analytical framework for EBFM in the Northeast.  Principal elements of the approach include (1) 
establishment of a transparent connection between single species and ecosystem-based advice 
using multispecies assessment models as a natural bridge,  (2) development of multiple 
operating models to test assessment models and candidate management procedures, (3) 
application of assessment models spanning a spectrum of complexity to evaluate the issue of 
model uncertainty (4) application of  formal strategies of multimodel inference in applying 
results from the multispecies assessment models (5) use of these results to assess uncertainty 
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and risk, and (6) evaluation of tradeoffs in a bioeconomic  context.  The models under 
development are designed to accommodate spatial structure and to incorporate consideration 
of climate variability and change. 
 
As a proof of concept, we are currently developing a prototype multispecies analysis for a 10 
species complex for Georges Bank (Figure 1). With colleagues at Renssalaer Polytechnic 
Institute and Woods Hole Oceanographic Institution we are developing and applying protocols 
to handle data and create model output that is traceable, repeatable, described, verified, 
validated, efficient, transparent, and available to user communities.  The approach is based on 
fundamental principles in informatics.  Data streams feeding into this process encompass 
fishery-dependent (both ecological and social-economic) sources, fishery-independent surveys, 
food habits data to identify and quantify biotic interactions among species, and oceanographic 
and climate data to track external forcing mechanisms. To further enhance communication with 
stakeholders we are developing options for data and model visualization to aid in the 
interpretation of multispecies model outputs. 
 
The core analytical elements of the process involve development and testing of a set of 
indicators, multispecies assessment models, social-economic modules linked to the assessment 
models, and forecast models developed outside the assessment model framework to 
complement predictions made using these assessments.  The interplay between the operating 
models and the other analytical elements of the approach is envisioned as an iterative process 
(Figure 1).  The analysis culminates in a risk analysis accounting for key uncertainties and in the 
context of multiple candidate management procedures.   The process is designed to provide 
management advice in the form of annual catch limits to match existing requirements under 
current management approaches on Georges Bank.  The results will be provided as an 
interactive web-based product (Figure 1). 
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Figure 1.  Key structural elements of the NEFSC prototype multispecies analysis of Georges 
Bank. 
 
Our overall approach entails the use of four different assessment models encompassing simple 
multispecies production models applied both to individual species and to defined functional 
groups, multispecies delay-difference models that implicitly accommodate simple demographic 
structure (again for individual species and functional groups), and a complex multispecies 
statistical catch-at-age model applied to individual species (Figure 2).  Single species analogues 
of these models are familiar to resource managers in the region and we have deliberately 
attempted to frame our approach in a way that trades on this familiarity. Multiple estimation 
techniques including maximum likelihood, state-space, genetic algorithm and Bayesian 
methods will be applied to the production models in both aggregated and disaggregated forms 
to assess aspects of estimation uncertainty.  
 
 A key issue in assessment and management of the Georges Bank system is the centrality of the 
mixed-species nature of the fishery.  We define our functional groups as species that are caught 
together and share basic ecological characteristics (similarity in life history attributes, body size, 
etc.).  Our interest in testing the performance of assessment models based on functional groups 
defined in this way centers both on their importance as key structural elements of the system 
and recognition that we cannot fully control the fishing mortality rates on the individual species 
comprising these mixed-species assemblages.  These species, inter alia, share similar histories 
of exploitation and environmental forcing. Tests will be made to assess the performance of the 
functional group models against models in which the full species identity of all components is 
retained to see if they offer any advantage in assessing mixed-species fisheries.  
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Economic modules link to the assessment models to produce revenue streams and measures of 
profitability. They are being developed for direct use in tradeoff analysis.   For the economic 
module we are also employing an empirical multispecies portfolio model approach to assess 
risk.  We are developing forecast models using new methods in nonlinear time series analysis to 
complement the assessment models. We are using two operating models to serve as a virtual 
test beds to examine the performance of the assessment models and to evaluate the efficacy of 
alternative management procedures.  These models, Hydra and EcoSim, are currently in 
different stages of development. Hydra is a length-structured model developed at NEFSC. It is 
designed to be spatially structured and to allow for multiple fleet sectors although these 
features have not yet been implemented. The model is designed to accommodate 
climate/environment forcing on biological and ecological processes. The operating model will 
be used to test the performance characteristics of several simpler assessment models that can 
be used to provide reference points for management action.  The initial focus will be on 
ecosystem-based fishery management to meet the needs of the New England and Mid-Atlantic 
Fishery Management Councils. Our application of EcoSim as an operating model will build on 
developments by Kerim Aydin at AFSC.  Kerim’s work substantially increases the flexibility and 
transparency of the EcoSim framework.   
 
  
 

 
Figure 2. Modeling elements to be employed in the prototype multispecies bio-economic model 
for Georges Bank. 
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Ecosystem modeling efforts at the NOAA/NMFS Southwest Fisheries Science 
Center   
 
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Brian Wells 
Southwest Fisheries Science Center, NMFS/NOAA 
 

Chinook salmon habitat, life-cycle, and DEB modeling 
 
Pacific salmon use a wide range of habitats throughout their life cycle, including river, 
estuarine, and marine ecosystems. This poses a significant challenge to our understanding of 
their population dynamics, because habitat conditions in one ecosystem and life-stage can have 
consequences that manifest in the following ecosystem and life stage. However, most salmon 
models do not capture the habitat variability in each ecosystem or incorporate the critical 
linkages between ecosystems. The Salmon Ecosystem Simulation And Management Evaluation 
(SESAME) project aims to address these issues for Chinook salmon from California’s Central 
Valley. SESAME uses a series of coupled physical-biological simulations to produce key 
spatiotemporally explicit habitat variables in each system: river, estuary, and coastal ocean. We 
use these habitat variables (temperature, flow, and food) to drive a Dynamic Energy Budget 
(DEB) model for Chinook salmon to explore how salmon grow from eggs to mature adults while 
moving across this complex landscape. 
  

 
Figure above demonstrates the basic model structure for the SEAME project. 
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ROMS-CoSINE krill estimations 
 
Below summary from: Santora, J.A,  W.J. Sydeman, M. Messie, F. Chai, Y. Chao, S.A. Thompson, 
B.K. Wells, and F. Chavez. 2013. Triple check: Observations verify structural realism of an ocean 
ecosystem model. Geophysical Research Letters.40:1-6 
 
Improvements in fisheries and ecosystem management could be made if the prediction of key 
zooplankton, such as krill, were possible using ocean ecosystem models. To examine structural 
realism, hence the validity of a coupled physical-biogeochemical model, we compared 
measured spatiotemporal dynamics of krill and seabird abundance off California to hindcasted 
mesozooplankton derived from an independently designed model. Observed krill and modeled 
mesozooplankton (Z2) displayed latitudinal coherence but distinct longitudinal offsets, possibly 
related to unrealistic bathymetry in the model. Temporally, Z2, Thysanoessa spinifera (a neritic 
krill species) and seabird density and reproductive performance were well correlated, indicating 
that quantitative prediction regarding marine predators in upwelling ecosystems is within 
reach. Despite its basin-scale framework, the ROMS-CoSiNE model captures zooplankton and 
top predator dynamics regionally in the central California region, suggesting its utility for 
management of marine ecosystems and highlighting rapid advances that can be made through 
collaboration between empirical scientists and ecosystem modelers. 
 
  

 
Shown above is the observed (acoustics) and estimated krill distribution from CoSINE along the 
CCS. There is significance coherence between these data. 
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Habitat modeling for green sturgeon using ROMS-CoSINE products 
 
Below summary from: Huff, D.D., S.T. Lindley, B.K. Wells, and F. Chai. 2012. Green sturgeon 
distribution in the Pacific Ocean estimated from modeled oceanographic features and 
migration behavior. Public Library of Science. 7:e45852 
 
The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from 
Baja California to the Bering Sea, tends to be highly migratory, moving long distances among 
estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic 
distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with 
migration behavior may play an important role. We estimated the distribution of green 
sturgeon by modeling species-environment relationships using oceanographic and migration 
behavior covariates with maximum entropy modeling (MaxEnt) of species geographic 
distributions. The primary concentration of green sturgeon was estimated from approximately 
41–51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in 
the vicinity of San Francisco and Monterey Bays from 36–37° N latitude. Unsuitably cold water 
temperatures in the far north and energetic efficiencies associated with prevailing water 
currents may provide the best explanation for the range-wide marine distribution of green 
sturgeon. Independent trawl records, fisheries observer records, and tagging studies 
corroborated our findings. However, our model also delineated patchily distributed habitat 
south of Monterey Bay, though there are few records of green sturgeon from this region. Green 
sturgeon are likely influenced by countervailing pressures governing their dispersal. They are 
behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering 
grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and 
biotic environmental features. Impacts of human activities on green sturgeon or their habitat in 
coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine 
spatial planning that makes use of high-quality species distribution information. 
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Figure above demonstrates model output for the sturgeon habitat models. 
 

Krill fishery and ecosystem modeling 
 
Below summary from: Watters, G.M., S.L. Hill, J.T. Hill, J.T. Hinke, J. Matthews, and K. Reid. 
2013. Decision-making for ecosystem-based management: evaluating options for a krill fishery 
with an ecosystem dynamics model. Ecological Applications 23:710-725. 
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Decision-makers charged with implementing ecosystem-based management (EBM) rely on 
scientists to predict the consequences of decisions relating to multiple, potentially conflicting, 
objectives. Such predictions are inherently uncertain, and this can be a barrier to decision-
making. The Convention on the Conservation of Antarctic Marine Living Resources requires 
managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health 
and resilience of the ecosystem, and the performance of the fisheries themselves. The 
managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have 
requested advice on candidate management measures consisting of a regional catch limit and 
options for subdividing this among smaller areas. We developed a spatially resolved model that 
simulates krill–predator–fishery interactions and reproduces a plausible representation of past 
dynamics. We worked with experts and stakeholders to identify (1) key uncertainties affecting 
our ability to predict ecosystem state; (2) illustrative reference points that represent the 
management objectives; and (3) a clear and simple way of conveying our results to decision-
makers. We developed four scenarios that bracket the key uncertainties and evaluated 
candidate management measures in each of these scenarios using multiple stochastic 
simulations. The model emphasizes uncertainty and simulates multiple ecosystem components 
relating to diverse objectives. We summarize the potentially complex results as estimates of the 
risk that each illustrative objective will not be achieved (i.e., of the state being outside the 
range specified by the reference point). This approach allows direct comparisons between 
objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk 
estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model 
predictions. Management measures that reduce coastal fishing, relative to oceanic fishing, 
apparently reduce risks to both the fishery and the ecosystem. However, alternative reference 
points could alter the perceived risks, so further stakeholder involvement is needed to identify 
risk metrics that appropriately represent their objectives. 
 

Plankton ecosystem dynamics in response to wind forcing, using ROMS-NEMURO 
 
E. Bjorkstedt’s group is using a 2-D, cross-shelf slice model to simulate circulation and plankton 
ecosystem dynamics in response to wind forcing.  The model is implemented in ROMS-
NEMURO.  Effects of low-frequency variability in sea level on thermocline depth are imposed by 
nudging alongshore-current structure. An individual-based model for rockfish early life history 
stages is used to simulate the growth of larvae released into the plankton at different times 
during the winter parturition season.  NEMURO zooplankton fields (meso- and micro-) are used 
to construct the prey field for optimally foraging larvae.  Potential survival, conditional on the 
date-of-birth, is calculated from average size-dependent mortality for each 'mini-cohort' over 
the course of the first 50 days. 
 
An index of recruitment is calculated by integrating the product of the probability of survival 
(conditional on date of birth) and the distribution of birth dates.   This recruitment index is a per 
capita measure of recruitment success analogous to recruitment deviations from stock 
assessments.   We assume that the distribution of birth dates is constant from year to year, and 
find the distribution that yields the best correlation between the resulting recruitment index 
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and recruitment deviations from stock assessments.   Recruitment index performs reasonably 
well, successfully capturing 1999 year class missed by the MWT survey.  Extensions of this work 
to examine the effects of variable predator fields (possibly indexed by PZoo in NEMURO) holds 
promise for improving fits, and explaining discrepancies between model predictions and 
RecDev associated with ENSO events. 
  
 

Ecosystem modeling efforts at the NOAA/NMFS Pacific Islands Fisheries Science 
Center 
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Phoebe Woodworth-Jefcoats and Jeff Polovina 
Ecosystems and Oceanography Division 
Pacific Islands Fisheries Science Center, NMFS/NOAA 
 
The Pacific Islands Fisheries Science Center is comparing two independent ecosystem models’ 
projections of climate and fishing impacts in the central North Pacific (CNP).  Similarities and 
differences in the models’ treatment of the same climate and fishing scenarios lend insight into 
both projected impacts and areas of uncertainty.   
 
We compare both a size-based and a species-based ecosystem model.  Both ecosystem models 
are driven with output from NOAA GFDL’s prototype Earth System Model 2.1 (ESM 2.1) and a 
range of fishing mortality levels.  ESM2.1 is a coupled climate model (Delworth et al. 2006, 
Gnanadesikan et al. 2006) and biogeochemical model (Dunne et al. 2005), forced by the IPCC 
SRES A2 (Nakićenović et al. 2000).  ESM2.1 outputs phytoplankton densities for three functional 
groups across two size classes.  As a result of increased stratification and reduced nutrient input 
to the euphotic zone, ESM2.1 projects CNP phytoplankton biomass to decline by 9 – 19% over 
the 21st century. 
 
The two ecosystem models in our comparison are structurally and computationally quite 
different. The size-based food web (SBFW) model uses size-based predation to drive continuous 
growth and mortality across all consumer sizes ranging from zooplankton to large fish 
(Blanchard et al. 2012).  Conversely, the species-based model (Ecopath with Ecosim, EwE) uses 
detailed species-based diets and trophic relationships (Howell et al. 2012).  Comparing these 
models’ output provides insights that may not be evident when using each model individually, 
as is often the case.  In particular, differences in their handling of identical climate and fishing 
scenarios can reveal previously overlooked uncertainties in both the impacts of climate change 
and fishing mortality, as well as in the ecosystem models themselves.  Additionally, areas of 
model agreement lend confidence to projections of future ecosystem impacts.   
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We examined biomass and catch of small and large exploitable fish.  Based on data from the 
Hawaii-based longline fishery, we determined the threshold for entry to the fishery to be 1 kg 
(Polovina and Woodworth-Jefcoats 2013).  Small (1 – 15 kg) and large (> 15 kg) size groupings 
were based on the size at which fish are fully exploited by the fishery (15 kg).  Small fish were 
subject to one quarter the level of fishing mortality as large fish. 
 
The magnitudes of catch and biomass projected by both models agreed well.  Additionally, both 
models projected a decline in large fish catch and biomass when fishing and climate change 
were combined.  This decline in large fish biomass led to a marked increase in small fish 
abundance and to a decline in the proportion of large fish included in the total catch.  Both 
models also projected the greatest catch of large fish at a moderate level of fishing mortality (F 
= 0.4), suggesting a possible maximum yield for the CNP. 
 
Despite broad model agreement, there were some interesting areas where the models differed.  
Perhaps the greatest difference between the two models was the degree to which variability at 
the base of the food web propagated to the top trophic levels.  Variability in the SBFW modeled 
catch and biomass was 2 – 27 greater than that modeled by the EwE model, with the greatest 
differences seen for large fish.  Additionally, the interannual variability in the EwE model 
seemed to track small phytoplankton more closely while the SBFW model tracked large 
phytoplankton.  This disparity can be at least partially explained by differences in the models’ 
structure, though it does raise the question of which aspects of projected climate change will 
have the greatest ecosystem impacts: changes in phytoplankton abundances as suggested by 
the EwE model, or changes in phytoplankton size structure, as suggested by the SBFW model.  
Additional model output disparities included the degree to which increased fishing mortality 
leads to both increased catch and associated prey release, and whether climate change and 
fishing will have synergistic or tempering effects. 
 
Now that our initial comparison is complete, we are moving forward with both model 
verification and development.  The upper trophic levels of the EwE model are fairly well 
resolved in terms of feeding relationships.  Yet, as trophic level decreases so too does the 
trophic resolution.  We will use diet and stable isotope data from the CNP to improve mid-
trophic-level structure in the EwE model.  We will also be using size and abundance data for 
CNP zooplankton and mid-trophic-level fish to verify the structure of the SBFW model.   
 
In addition to verifying and improving both models’ structure, we will also be using them to 
evaluate a suite of CNP climate projections.  A number of models included in Climate Model 
Intercomparison Project 5 (CMIP5; Taylor et al. 2012) contain biological data at one or two 
trophic levels.  Using these data for a larger ecosystem model comparison will provide greater 
insight into potential climate and fishing impacts in the central North Pacific. 
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Ecosystem modeling efforts at the NOAA/NMFS Southeast Fisheries Science 
Center   
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Arnaud Grüss and Michael Schirippa 
RSMAS and SEFSC 
 
Ecosystem-based management (EBM) has become a central paradigm in the Gulf of Mexico 
(GOM). In particular, a comprehensive Integrated Ecosystem Assessment (IEA) program has 
been initiated in the GOM by the Southeast Fisheries Science Center (SEFSC) to organize science 
in order to inform decisions in EBM at multiple scales and across ocean use sectors (Levin et al., 
2009, 2013). In March 2013, the Gulf of Mexico Fisheries Management Council’s Standing and 
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Ecosystem Scientific & Statistical Committees passed two motions expressing their desire to 
incorporate IEA products into single-species stock assessments and living marine resource 
(LMR) management decisions on a regular basis (http://www.noaa.gov/iea/transfer-
knowledge/gulf-of-mexico-council-support.html). 
 
Simulation models are essential tools for guiding EBM. Simulation models used at the SEFSC for 
informing EBM include a diversity of single-species and ecosystem models. However, multi-
model approaches at the SEFSC are in their very infancy. In the following, we provide an 
overview of the different simulation models being used to inform EBM in the GOM. Then, we 
describe how these models are contributing, or may eventually contribute to multi–model 
approaches in the GOM. Finally, we briefly summarize a number of studies being conducted at 
or funded by the SEFSC that are informing or are going to inform simulation models and multi-
model approaches in the GOM.   
 

Simulation models used at the SEFSC 
Most of the simulation models used at the SEFSC are ecosystem models employed within the 
GOM IEA program. These ecosystem models include Ecopath with Ecosim (EwE) and OSMOSE 
models for the West Florida Shelf (WFS), an EwE model for the U.S. coast of the GOM (referred 
to as ‘GOM Shark EwE’), and an Atlantis model for the whole GOM (referred to as ‘Atlantis-
GOM’). The WFS is one of the main subregions of the GOM, under high and increasing fishing 
and environmental pressures (Coleman et al., 2004; Okey et al., 2004; Karnauskas et al., 2013). 
The OSMOSE model that was designed for the WFS, which we refer to as ‘OSMOSE-WFS’, is the 
first OSMOSE model being developed in the U.S. OSMOSE is an individual-based, multi-species 
modeling approach, which is increasingly being applied worldwide to inform EBM (Shin and 
Cury, 2001, 2004). In particular, OSMOSE has been used within a multi-model approach to 
explore the impacts of exploitation scenarios in different marine ecosystems (Smith et al., 2011; 
Travers et al., 2010).  
 
The other simulation models used at the SEFSC for informing EBM consist of: (1) an EwE model 
for Galveston Bay, Texas; (2) an ecosystem simulation model for South West Florida; (3) a Stock 
Synthesis (SS) model for the gag grouper (Mycteroperca microlepis) population of the GOM 
incorporating red tides; (4) a compartment based systems model for brown shrimp 
(Farfantepenaeus aztecus) in GOM estuaries representing the influence of abiotic parameters 
on shrimp production; (5) a population model for white shrimp (Litopenaeus setiferus) in the 
northern Gulf of Mexico considering the impacts of the abiotic environment on shrimp vital 
rates; and (6) population models for a few fishery species in Galveston Bay taking into account 
the effects of watershed-based activities on the harvest of these species, complemented by a 
loop analysis.  
 

Ecosystem simulation models developed for the WFS 
Ecosystem simulation models developed for the WFS and used within the GOM IEA program 
include two EwE models (‘WFS Reef fish EwE’ and ‘WFS Red tide EwE’) and the OSMOSE-WFS 

http://www.noaa.gov/iea/transfer-knowledge/gulf-of-mexico-council-support.html
http://www.noaa.gov/iea/transfer-knowledge/gulf-of-mexico-council-support.html
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model. WFS Reef fish EwE was constructed by David Chagaris and Behzad Mahmoudi from the 
Fish and Wildlife and Research Institute (FWRI). WFS Reef fish Ecopath provides a snapshot of 
the WFS ecosystem over the period 2005-2009 (Chagaris, 2013; Chagaris and Mahmoudi, 2013). 
Alisha Gray and Cameron Ainsworth from the University of South Florida (USF) designed WFS 
Red tide EwE, which is similar to WFS Reef fish EwE and aims to investigate the impacts of red 
tide outbreaks for gag grouper (Gray et al., 2013). OSMOSE-WFS was developed by Arnaud 
Grüss from the SEFSC and Rosenstiel School of Marine and Atmospheric Studies (RSMAS), 
University of Miami (UM) and colleagues (Grüss et al., 2013a, 2013b, in. prep.). OSMOSE-WFS is 
currently a steady-state model describing trophic interactions in the WFS over the period 2005-
2009. OSMOSE-WFS builds on WFS Reef fish Ecopath in that the two models share a number of 
characteristics (e.g., the spatial domain considered, reference biomasses). However, OSMOSE-
WFS and WFS Reef fish Ecopath differ greatly in both their structure and assumptions. In 
particular, diets reconstructed from empirical data are input into Ecopath, while diet 
compositions emerge from simulations in OSMOSE. The use of the OSMOSE-WFS, WFS Reef 
Fish Ecopath/EwE and WFS Red tide EwE models is interesting to have different perspectives on 
the same questions, while being able to identify from where discrepancies between the 
different models may originate.  
 
In 2013, OSMOSE-WFS, WFS Reef Fish EwE and WFS red tide EwE were used to inform SEDAR 
(SouthEast Data, Assessment, and Review), a management council process designed to improve 
the reliability of single-species stock assessments in the GOM 
(http://www.sefsc.noaa.gov/sedar/). In particular, estimates of instantaneous natural mortality 
rates for gag grouper were produced with the three ecosystem models. Biomass, catch and 
productivity (i.e., production over biomass) parameters of the WFS Reef fish Ecopath model 
were rescaled to obtain an Ecopath model for the early 1950s, from which Chagaris and 
Mahmoudi (2013) evaluated the natural mortality rates of three life stages (stanzas) of gag 
grouper (younger juveniles, older juveniles and adults) from 1950 to 2009, under alternate 
assumptions about compensatory survival and predation. The authors found interannual 
variability of gag grouper natural mortality to decrease with age and compensatory 
improvements in survival during periods of low abundance. Gray et al. (2013) showed with WFS 
Red tide EwE that mortality due to red tides was by far greater than predation mortality for 
adult gag grouper over the period 2005-2009.  
 
Grüss et al. (submitted) evaluated the natural mortality rates of younger juvenile, older juvenile 
and adult gag grouper over the period 2005-2009 using OSMOSE-WFS. OSMOSE-WFS and WFS 
Reef fish Ecopath agree on the magnitude of the instantaneous natural mortality of the 
different life stages of gag grouper over the period 2005-2009, but not always on the main 
causes of this mortality (i.e., predation or other causes). Predation mortality rates of younger 
and older juvenile gag groupers are higher in OSMOSE-WFS than in WFS Reef fish Ecopath, and 
OSMOSE-WFS identified predators of juvenile and adult gag groupers that were missed in WFS 
Reef Fish Ecopath. One major finding in Grüss et al. (submitted.) is that the bulk of the natural 
mortality of adult gag grouper over the period 2005-2009 did not come from predation. The 
natural mortality rates of adult gag grouper due to causes other than predation evaluated with 
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OSMOSE-WFS and WFS Reef Fish Ecopath/EwE for the period 2005-2009 were consistent with 
the red tide mortality on adult gag grouper estimated by WFS Red tide EwE for this time period.   
 
 

Simulation models developed for the whole GOM 
 Skyler Sagarese from the SEFSC and RSMAS, UM is developing the GOM Shark EwE 
model within the GOM IEA program. GOM Shark EwE is being constructed primarily to assess 
the ecosystem impacts of alternative fishing policies on large coastal sharks in the coastal areas 
of the GOM.  Different exploitation scenarios (direct versus indirect fishing mortality 
(menhaden bycatch)) were explored with the model. Preliminary results with GOM Shark EwE 
suggest that alterations to fishing patterns for the commercial shark and menhaden fisheries 
would lead to substantial changes in relative biomass for both higher trophic level predators 
and lower trophic level organisms, and significantly impact the trophic structure of the coastal 
areas of the GOM.  
 
Cameron Ainsworth from USF and his students in collaboration with the SEFSC and RSMAS, UM, 
are designing the Atlantis-GOM model. The development of Atlantis-GOM is funded by Florida 
Sea Grant and the C-IMAGE (Center for Integrated Modeling and Analysis of the Gulf 
ecosystem) consortium. Atlantis-GOM is a highly sophisticated model whose spatial units 
(polygons) cover both the continental shelf and deep waters of the GOM. The construction and 
parameterization of Atlantis-GOM has required a number of preliminary studies, in particular to 
reconstruct fisheries catches in the GOM during the past 25 years, produce spatial distribution 
maps for the model and generate diet matrices for the numerous functional groups 
represented in the model. Atlantis-GOM is currently being calibrated and should be operational 
within a few months for use within the GOM IEA program.  
 
Skyler Sagarese and colleagues from the SEFSC incorporated red tides in the SS model designed 
for the gag grouper population of the GOM for SEDAR in 2013 (SEDAR 33), within the GOM IEA 
program. Using the base SS model (13 age classes: 0, 1… 12+ year old individuals) and an 
abbreviated version of this model (3 age classes: 0, 1-4 and 4+ years old individuals), natural 
mortality (M) of each plus group was linked to a red tide index. Five scenarios based on 
candidate red tide indices and methods for inclusion in the SS model were devised and 
compared. Regression analysis provided strong evidence for a relationship between deviations 
in M and evaluated environmental indices for both base models. Environmental consideration 
of red tide generally improved model fit in comparison to base models with no red tide, with 
significant relationships identified between each environmental index and M deviations when 
using the model method in the SS model. Hereafter, the SS model designed for the gag grouper 
population of the GOM incorporating red tides is referred to as the ‘Red tide SS model’.  
 

Simulation models developed for other regions of the GOM 
 The Galveston Lab is devising anEwE model for Galveston Bay. The model focuses on 
penaeid shrimps and represents an alternative approach to examining ecosystem impacts on 
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shrimp production. One immediate impetus for constructing the Galveston Bay EwE model was 
the ongoing project entitled “Developing linked watershed-marine ecosystem service models to 
evaluate coastal management strategies”. This project aims to examine how changes in land 
cover affect runoff and water quality and, ultimately, the production of penaeid shrimps and 
other fishery resources in Galveston Bay. The Galveston Lab would need someone with EwE 
expertise to help complete the Galveston Bay EwE model. 
 
Kelly Kearney from NOAA/AOML Miami and RSMAS, UM and colleagues from AOML Miami and 
the SEFSC are developing an ecosystem model for South West Florida within the NOAA COCA 
(Coastal and Ocean Climate Applications) project to predict ecosystem effects of dual climate 
change and water management change scenarios. This model builds on an existing mechanistic 
trophic model for Florida Bay. It will be used to: (1)   examine trophic interactions for two socio-
economically important species of the South West Florida ecosystem, spotted seatrout 
(Cynoscion nebulosus) and gray snapper (Lutjanus griseus); and (2) determine how interacting 
water management/climate changes might affect these two species, their prey, or other 
species. Spotted seatrout and gray snapper are indicator species used to determine the success 
of the Comprehensive Everglades Restoration Project (CERP), designed to improve the quantity, 
quality, timing, and distribution of water flow to the Everglades and South West Florida 
estuaries. Therefore, outcomes of the South West Florida ecosystem model will be useful to 
produce decision support tools depicting the impacts of climate change and water management 
change scenarios on the vulnerability and health of South West Florida ecosystem.   
 
 The Galveston Lab is currently building a compartment based systems model for brown 
shrimp in GOM estuaries, in which shrimp production is influenced (through growth and 
mortality) by temperature, salinity and access to emergent marsh vegetation (hereafter 
referred to as the ‘GOM brown shrimp model’). The objective of these modeling efforts is to 
introduce environmental variability into the SS model used for brown shrimp stock 
assessments.   
 
 The Galveston Lab in collaboration with Texas A&M University has developed a stage-
based population model for white shrimp in the northern GOM considering the impacts of 
salinity and access to protective vegetated marsh habitat on the vital rates (growth, mortality, 
fecundity) of juveniles of the species (hereafter referred to as the ‘GOM white shrimp model’) 
(Baker et al., in press). The model indicates that modest changes in juvenile growth and 
mortality due to abiotic factors have a greater impact on shrimp stock size than the full range in 
fishing mortality over the past few decades. These results suggest that variability in juvenile 
survival may be a strong driver of adult stock size and that the environmental factors that 
regulate juvenile growth and mortality need to be properly understood for the effective 
management of coastal nurseries and white shrimp stocks. 
 
The Galveston Lab is also developing population models for a few fishery species in Galveston 
Bay forced by a marine water quality model, which is itself forced by a watershed model, based 
on the modeling approach of Toft et al. (2013). These linked watershed-marine models allow 
evaluating how the productivity of fishery species is affected by water quality (temperature, 
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salinity, nitrates), which is itself affected by freshwater discharge and nitrogen loading. Because 
linked watershed-marine models are only designed to examine effects on a few fishery species 
(including oysters and blue crab, Callinectes sapidus), a loop analysis was conducted to describe 
interactions and linkages in Galveston Bay food web and provide a tool to assess hypotheses 
about food web responses (Carey et al., 2013).  
 

Multi-model approaches in the GOM 
 We distinguish between three types of multi-model approaches: (1) using a reference 
set of operating models (OMs); (2) inter-model comparisons; and (3) ensemble modeling.  
 
A reference set of OMs is built from a single simulation model. Each OM is a version of the 
simulation model representing a plausible ‘state of nature’ (Plagányi et al., 2007). Using a 
reference set of OMs is useful to address parameter uncertainty (i.e., uncertainty surrounding 
model parameters stemming from, e.g., observation errors), process uncertainty (i.e., 
uncertainty surrounding the way processes are considered in the simulation model) or future 
uncertainty (i.e., uncertainty on future exploitation and environmental patterns). In the GOM, 
reference sets of OMs were used for the Red tide SS model to determine the best candidate red 
tide indices and methods for inclusion of the indices in the SS model (to address parameter and 
process uncertainties). Reference sets of OMs may also be used for: (1) the South West Florida 
ecosystem model to seek scientific conclusions robust to uncertainty of food web processes in 
the face of water management and climate changes (to address future uncertainty); and (2) the 
GOM brown shrimp model to identify the best candidate environmental indices and methods 
for inclusion of the indices in a SS model (to address parameter and process uncertainties).  
 
Inter-model comparisons involve models with different structure and assumptions. However, 
inter-model comparisons require models being compared to share a number of characteristics 
(e.g., the spatial domain considered, species and processes represented) depending on the 
questions that need to be addressed. Inter-model comparisons are interesting to have different 
perspectives on the same questions, while being able to identify from where discrepancies 
between the different models being used may originate. In parallel to model uncertainty (i.e., 
uncertainty related to the structure and assumptions of models being used), inter-model 
comparisons can also address parameter uncertainty if references sets of OMs are constructed 
from some of the models being used. Inter-model comparisons in the GOM have been 
conducted only in the WFS through the collective evaluation of the natural mortality rates of 
gag grouper by OSMOSE-WFS, WFS Reef fish Ecopath/EwE and WFS Red tide EwE.  
 
Other inter-model comparisons may be implemented in the GOM with: (1) OSMOSE-WFS, WFS 
Reef fish Ecopath/EwE, WFS Red tide EwE and Atlantis-GOM to evaluate the instantaneous 
natural mortality rates of socio-economically important species of the GOM, including red 
snapper (Lutjanus campechanus) and red grouper (Epinephelus morio), and to run Management 
Strategy Evaluations (MSEs) in the WFS; (2) GOM Shark EwE, WFS Reef fish EwE and WFS Red 
tide EwE to assess the ecosystem impacts of alternative fishing policies on large coastal sharks 
in the GOM; (3) Galveston Bay EwE, linked watershed-marine models and loop analysis in 
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Galveston Bay to investigate how the productivity of fishery species like blue crab is affected by 
freshwater discharge and nitrogen loading; (4) the Galveston Bay EwE, GOM brown shrimp and 
GOM white shrimp models to evaluate how the mortality and production of penaeid shrimps 
are impacted by their environment (biotic or abiotic) in Galveston Bay; and (5) the Red tide SS 
and WFS Red tide EwE models to collectively assess the mortality rates of different life stages of 
gag grouper due to red tide outbreaks in the 2000s.  
 
Ensemble modeling is a framework exposing an ensemble of simulation models with different 
structure and assumptions to identical exploitation and environmental scenarios, using multiple 
realizations of each exploitation scenario and each environmental scenario (Gardmark et al., 
2013). Ensemble modeling addresses model, process and future uncertainties, and can also 
address parameter uncertainty if references sets of OMs are constructed from some of the 
models being used. Ensemble modeling are useful to disentangle model and process 
uncertainties from future uncertainty by comparing results among models within a single 
climate-exploitation realization, and within models among climate-exploitation realizations, 
respectively (Gardmark et al., 2013). Simulation models in the ensemble must be subjected to 
the same environmental forcing and fishing levels (Gardmark et al., 2013).  Furthermore, to 
enable comparisons across models, simulated responses in biomasses or catches must be 
presented as the change in simulated biomasses or catches from the simulated biomasses or 
catches at the beginning of simulations within each model, relative to the biomasses or catches 
at the beginning of simulations estimated by a reference stock assessment model (see Fig. 2 in 
Gardmark et al., 2013).  
 
Here, we provide an example of ensemble modeling for the WFS, exposing WFS Reef fish 
Ecopath and OSMOSE-WFS to identical exploitation and environmental scenarios to evaluate 
potential future biomasses, catches and food web processes in the WFS (Fig. 1). The ensemble 
modeling planned for the WFS will incorporate other simulation models, including WFS Red tide 
EwE and Atlantis-GOM, but, for simplicity, we consider here a simplified ensemble modeling 
with only one EwE model and one OSMOSE model. This simplified ensemble modeling will be 
developed in two steps consisting in: (1) producing a mass-balanced WFS Reef fish Ecopath 
model providing a snapshot of the WFS ecosystem in 2009, and a calibrated steady-state 
OSMOSE-WFS model describing the trophic structure of the WFS in 2009; and (2) running 
forward projections from the WFS Reef fish Ecopath model using the Ecosim module, and from 
the steady-state OSMOSE-WFS model by exposing the model to exploitation and environmental 
scenarios after the spin-up phase. In other words, the second step for an ensemble modeling in 
the WFS will consist in running forward projections with both WFS Reef fish EwE and a dynamic 
version of the OSMOSE-WFS model.   
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Fig. 1. Schematic representation of the development of an ensemble modeling for the West 
Florida Shelf (WFS) exposing the WFS Reef fish Ecopath and OSMOSE-WFS models to identical 
exploitation and environmental scenarios. The ensemble modeling will be developed in two 
steps, consisting in: (1) producing a mass-balanced WFS Reef fish Ecopath model and a 
calibrated steady-state OSMOSE-WFS model, both describing the trophic structure of the WFS 
in 2009; and (2) running forward projections with WFS Reef fish Ecopath using the Ecosim 
module, and with a dynamic version of the OSMOSE-WFS model.  
 
The first step for an ensemble modeling in the WFS is partly completed. Biomass, catch and 
productivity parameters of the WFS Reef fish Ecopath model were rescaled to obtain an 
Ecopath model for the early 1950s, from which Chagaris (2013) evaluated changes in 
biomasses, mortalities and trophic interactions in the WFS over the period 1950-2009 as well as 
vulnerability exchange rates using the Ecosim module. Vulnerability exchange rate estimates 
need to be transferred to the Ecopath module, while biomasses, catches and fishing mortality 
rates in Ecopath need to be adjusted to match biomasses, catches and fishing mortality rates 
estimated by reference stock assessments for 2009. The resulting Ecopath model, which 
provides a snapshot of the WFS ecosystem in 2009 will need to be mass-balanced. The steady-
state OSMOSE-WFS model was calibrated so that the biomasses of all the high trophic level 
(HTL) groups of fish and invertebrate species represented in the model match biomass levels 
observed over the period 2005-2009. This steady-state model needs to be recalibrated using 
both biomass and fisheries catch data to ensure that both biomasses and catches predicted by 
the steady-state OSMOSE-WFS model match the biomass and catch levels estimated by 
reference stock assessments for 2009. Before recalibrating the steady-state OSMOSE-WFS 
model, fishing mortality rates in the model will be set to the fishing mortality rates estimated 
by reference stock assessments for 2009. 
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The second step for an ensemble approach in the WFS will consist in running forward 
projections with WFS Reef fish EwE and a dynamic version of OSMOSE-WFS under alternate 
exploitation and environmental scenarios. Before running forward projections, Fmsy’s, i.e., the 
fishing mortality rates at which fisheries catches reach a maximum, will be estimated for both 
WFS Reef fish EwE and OSMOSE-WFS. Exploitation scenarios will be defined based on the 
Fmsy’s estimated and potential Harvest Control Rules (HCRs). Environmental scenarios will be 
explored to evaluate the impacts of climate change on biomasses, catches and food web 
processes in the WFS. When forward projections are run and exploitation and environmental 
scenarios explored, WFS Reef fish EwE and OSMOSE-WFS will be subjected to the same 
environmental forcing. Thus, the biomasses of plankton groups considered in both WFS Reef 
fish EwE and OSMOSE-WFS may be subjected to identical changes (reflecting changes in 
environmental conditions) in both models.  
 

Studies informing simulation models and multi-model approaches in the GOM 
 The development of simulation models and multi-model approaches in the GOM would 
not be possible without a number of studies being conducted at or funded by the SEFSC. These 
studies include – but are not limited to: (1) applications of a biophysical modeling approach, the 
Connectivity Modeling System (CMS), to red snapper, gag grouper and red grouper populations 
of the GOM; (2) the development of a large database gathering information about diets and 
trophic interactions in the GOM, the ‘Gulf of Mexico Species Interaction (GoMexSI)’ database; 
(3) the construction of candidate red tide indices for input for stock assessment models; and (4) 
research surveys organized by the SEFSC.  
 
Mandy Karnauskas from the SEFSC in collaboration with RSMAS, UM has applied the CMS to red 
snapper and gag grouper, and is going to apply this modeling approach to red grouper. The 
CMS uses outputs from hydrodynamic models and tracks the three-dimensional movements of 
advected particles through time, given a specified set of release points and particle behaviors 
(Paris et al., 2013). To estimate expected annual recruitment strength due to oceanographic 
factors alone, particles representing eggs are released from known spawning locations on a 
yearly basis, and are tracked through time with a realtime oceanographic hindcast which gives a 
best estimate of the specific oceanographic conditions at each point in time (HYCOM, 
http://www.hycom.org). The percentage of particles that successfully reach settlement habitat, 
given the parameterized biological limitations (e.g., pelagic larval duration), then represents the 
expected recruitment anomaly for that year. This technique has been used to provide estimates 
of recruitment over the most recent decade to the red snapper and gag grouper stock 
assessments conducted within the SEDAR process (Karnauskas et al., 2013a, 2013c). This 
technique is also going to be employed to deliver estimates of recruitment for red grouper over 
the recent period to SEDAR, and to produce spatial distribution maps for young-of-the-year red 
and gag groupers for the OSMOSE-WFS model.   
 
 James Simons from the Center for Coastal Studies at Texas A&M University and 
colleagues are supporting the GOM IEA program by compiling the GoMexSI database (Simons et 
al., 2013; http://gomexsi.tamucc.edu/). The development of the GoMexSI database is primarily 
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intended to inform the diet compositions entered in GOM EwE and Galveston Bay EwE, and to 
provide information to OSMOSE-WFS and Atlantis-GOM for the estimation of a few input 
parameters (minimum and maximum predator over prey size ratios and accessibility 
coefficients in OSMOSE-WFS, and gape sizes in Atlantis-GOM). 
 
 John Walter from the SEFSC and colleagues developed indices of red tide severity from a 
generalized additive model (GAM) that predicts the probability of a red tide bloom using a suite 
of satellite derived remote sensing products and the FWRI Harmful Algal Bloom database. 
These indices are intended to be incorporated as environmental covariates into stock 
assessment models, and particularly into the SS model developed for gag grouper for SEDAR 33. 
Walter et al. (2013) created several indices constituting different spatial and temporal 
partitions based on hypothesis regarding the spatial and temporal overlap of gag grouper 
populations with red tide blooms.  
 
 Research surveys organized by the SEFSC are useful, among other things to produce 
spatial distribution maps for the ecosystem models developed within the GOM IEA program 
(Drexler and Ainsworth, 2013; Grüss et al., 2014). These research survey include the SEAMAP 
(Southeast Area Monitoring and Assessment Program) groundfish/trawl (GSMFC, 2011), the 
NMFS BLL (National Marine Fisheries Service bottom longline) (Ingram et al., 2005) and the 
SEAMAP reef fish video surveys (Campbell et al., 2013; Gledhill et al., 2005) and the acoustic 
surveys conducted at the Mississippi labs.  
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Northwest Fisheries Science Center: Multi-model inference, linking models, and model 
ensembles 
Since the last National Ecosystem Modeling Workshop, several innovative steps have been 
taken by scientists at Northwest Fisheries Science Center and collaborators to link models, to 
consider model ensembles, and to draw inference from multiple models.   Some of these efforts 
are described below, with examples primarily drawn from the California Current Integrated 
Ecosystem Assessment (IEA, http://www.noaa.gov/iea/CCIEA-Report/index.html).   While some 
avenues are extremely promising, wide gaps are evident, and there is a need for a concerted 
West Coast effort to fill these gaps. For instance, if oceanographic projections under climate 
change were available, these could tie directly into ecosystem, population, and individual-based 
models already in use.  
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J-SCOPE  (University of Washington JISAO,  PMEL, NWFSC) 
A seasonal ocean prediction system (J-SCOPE, http://www.nanoos.org/products/j-
scope/home.php/) has been developed for the coastal waters of the Pacific Northwest.  The 
goal has been to provide seasonal (six to nine month) predictions of ocean. The J-SCOPE model 
system is based on climate forcing as specified by the Coupled Forecast System (CFS) global 
climate model.  The CFS is a coarse-scale, coupled atmosphere-ocean-land model that 
assimilates both in-situ and satellite-based ocean and atmospheric data.  J-SCOPE uses CFS to 
force a high-resolution (grid spacing ~1.5 km) version of the Regional Ocean Modeling System 
(ROMS) that includes a state-of-the-art biogeochemical module and nutrient, phytoplankton, 
zooplankton, detritus (NPZD) module,  with an additional detrital pool and oxygen submodel.  
The ROMS predicts specific oceanic properties crucial to the nearshore and coastal marine 
ecosystem such as temperature, currents, upwelling, pH, oxygen concentration, and plankton 
distributions.   J-SCOPE has been used to reforecast 2009 and 2013 sardine distributions, and 
these forecasts will be expanded for other pelagic species and for Dungeness crab, as well as to 
provide forecasted ecosystem indicators for the Integrated Ecosystem Assessment.   
 
 

Salmon population projections under climate change  
Crozier et al. (2013 IEA, forthcoming) employed a salmon life cycle model to evaluate the 
impact of climate change on three populations of threatened Snake River spring/summer 
Chinook salmon (Oncorhynchus tshawytscha). The authors used downscaled temperature and 
stream flow projections for the 2040s from 10 global circulation models (GCMs) and 2 
emissions scenarios to characterize freshwater climate changes. They conducted a sensitivity 
analysis of ocean conditions by systematically varying periods of relatively favorable and 
unfavorable climate regimes from the historical record. Scenarios for ocean conditions 
consisted of alternative percentages of years when ocean conditions during early ocean entry 
by salmon were considered favorable (negative mean annual Pacific Decadal Oscillation [PDO] 
values) and unfavorable (positive PDO values) for survival. Among other results, the authors 
found that management actions leading to higher survival through the hydrosystem (dams) 
successfully mitigated for the increased extinction risk due to climate conditions in all three 
populations. Abundance still declined from baseline under the worst ocean scenarios in two 
populations. Whether this recent improved survival can be sustained is not clear. But these 
results suggest a significant opportunity for recovery in these threatened populations. 
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Figure 1, from Crozier et al. (forthcoming 2013 IEA).  Median spawner abundance of Bear Valley 
Creek (Salmon River) Chinook salmon, as a function of freshwater climate scenarios (A1B or B1), 
hydrosystem survival (“Current”, or improved survival rates labelled “recent”), and ocean 
conditions. Ocean conditions are characterized in terms of the percent of years with 
consistently positive PDO, and are compared with the actual historical time series (“Historic”). 
The baseline scenario used the historical freshwater and ocean conditions and the “current” 
hydrosystem management, and is shown by the horizontal line. The boxes show the range 
across all global climate models (GCMs) for a given scenario (line shows the median GCM, the 
boxes show the interquartile range, and the whiskers show the full range of all GCMs). 
 

Forage fish 
Forage fish play a key role in the California Current food web. Internationally, these species 
sustain over one quarter of global fish production. Key questions for forage fish in the California 
Current are:   1) What is the likely response to climate change,   2) What are the ecological 
implications of recent declines in abundance of sardines  3)  What is the support for , and 
implications of , recent hypotheses related to fluctuations in sardine and anchovy stock     4) 
How can harvest control rules for forage fish be  modified to account for both the ecological 
role and population dynamics of these species . One of the strengths of NOAA ecosystem 
modelling on the West Coast (SWFSC and NWFSC) is that we have applied two models to 
questions related to the role of forage fish in the food web (Atlantis and Ecosim, see Kaplan et 
al. at http://www.noaa.gov/iea/CCIEA-Report/management-testing/index.html ), and models 
such as ECOTRAN  (forthcoming 2013 IEA ), and NEMURO-SAN (SWFSC)  could be brought to 
bear on these questions of climate effects. These different ecosystem modeling approaches 
could support SWFSC empirical modeling and stock assessments for sardine.  Multiple  model 
inference using different model structures and assumptions is crucial in handling and 
quantifying uncertainty around complex ecosystem models and these ecological processes.   
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Coupled Economic-Ecological models 
Direct coupling of ecosystem models to economic methods allows the translation of fisheries 
catches into jobs and broader economic revenue, rather than simply dockside revenue.  In the 
context of the IEA, population and ecosystem modelers have projected salmon and groundfish 
harvests under different management scenarios for dams and catch share systems. Using input-
output models such as IMPLAN, economists at SWFSC and NWFSC are able to translate this into 
economic impacts and employment at the coastwide, state, and community (port) levels (see 
analyses by Gray et al and Thomson at http://www.noaa.gov/iea/CCIEA-Report/management-
testing/index.html).  These models are intended to capture the economic response over short 
time scales.  Notably, new mandatory economic data collection for West Coast catch share 
fisheries is leading to rapid improvements in the economic models, and could facilitate more 
dynamic models of fishing and human behaviour.  
 

Multiple Model Ecosystem modeling efforts at the NOAA/NMFS Chesapeake 
Bay Office (NCBO) 
submitted as a background document to the: 
3rd NMFS National Ecosystem Modeling Workshop (NEMoW 3) 
18-20 March 2014, Seattle, WA 
 
prepared by: 
Howard Townsend, Tom Ihde, Mejs Hasan 
NOAA/NMFS Chesapeake Bay Office 

Background Information on NCBO Ecosystem Models 
The NOAA Chesapeake Bay Office (NCBO) Modeling and Analysis Team develops and 
implements modeling tools and statistical analyses to support ecosystem-based management 
of the Chesapeake Bay’s living resources and NOAA trust resources in the bay. These tools and 
models are designed to synthesize information about many features of an ecosystem and 
provide: 
• Increased understanding of interactions among the components of the Bay’s 
ecosystems, 
• Improved synthesis based on standardized ecosystem data, 
• Improved ability to evaluate and adapt ecological monitoring efforts in the region, and 
• The ability to simulate the outcomes of a range of possible management actions to 
clarify tradeoffs among the interests of stakeholders. 
 
NCBO modeling efforts are geared toward supporting ecosystem-based fisheries management 
(EBFM) in the Chesapeake Bay.  The primary models for EBFM are the Chesapeake Bay Fisheries 
Ecosystem Model (CBFEM) and Chesapeake Atlantis Model (CAM).  Both modeling approaches 
share a common trophic structure, which allows some insight into questions concerning model 
complexity.  
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The Chesapeake Bay Fisheries Ecosystem Model (EwE/Ecospace) 
 The CBFEM is a trophic model of the Chesapeake Bay developed using Ecopath with Ecosim 
(EwE) software. The Ecopath module of the CBFEM uses estimates of the biomass of 58 trophic 
groups representing the fisheries species of the Bay and their predators and prey to create a 
mass-balanced snapshot of the organisms and trophic linkages in the Bay as they existed in 
1950. The biomass pools represent either a single species or a group of species that constitutes 
an ecological guild. Some biomass pools were divided into ontogenetic age categories (e.g., 
young-of-the-year and adult). The model is used to simulate management strategies using the 
Ecosim module. Variability in the simulation module is driven by a time series of primary 
productivity and by several time series of fishing effort on the major trophic groups.   The 
model has been fit to a time series (1950-2009) of relative abundance indices for the major 
trophic groups. 

  
Figure 1. CBFEM Ecosim output compared to observed fish biomass indices, 1950-2009. 
 
Currently, the team is developing a spatial version of the CBFEM using the Ecospace module of 
EwE.  The spatial model will incorporate spatial forcing functions of key environmental 



 52 

parameters (salinity, temperature, and dissolved oxygen) to improve the representation of 
seasonal changes in trophic group distributions. 
 

The Chesapeake Atlantis Model 
CAM, based in the Atlantis software developed by the Australian Commonwealth Scientific and 
Industrial Research Organization (CSIRO), has been developed to a stage such that it simulates 
the biogeochemical cycles and the fisheries food web of the Chesapeake. This model is an 
approach for conducting formal management strategy evaluation—a simulation that accounts 
for tradeoffs in performance across a range of management objectives. It provides the 
decisionmaker with information on which to base a rational decision, given the decisionmaker’s 
objectives, preferences, and attitude concerning risk; it does not prescribe an optimal strategy 
or decision.   
 
CAM differs from many recent Atlantis models due to the extreme nature of the Chesapeake 
system and its management challenges. Chesapeake Bay is the largest estuary in the US.  The 
watershed for the Bay is very large (>165,760 square km/ 64,000 sq. mi.), encompassing 
portions of 6 states and the entire District of Columbia, and numerous metropolitan areas 
(largest include: Norfolk, Richmond, and Charlottesville, VA; Washington DC;  Harrisburg, PA; 
Baltimore, MD; and Cooperstown, NY).  The system bridges multiple jurisdictions, so the system 
is subject to a complex mix of regulations as well.  There is a growing population of more than 
17 million people, as well as a relatively large agricultural sector, all of which contribute to 
exceptionally high nutrient loads to the system.  Residence time for nutrients and particulate 
matter is relatively high (90-180 d), due to high levels of freshwater flow from river inputs and 
consequent lower-layer counterflow.  The Chesapeake is extremely shallow, with a mean depth 
of only 6.5 m; consequently, benthic dynamics are critical.  Turbidity is high enough to limit 
plant growth, even in relatively shallow areas of the Bay.  Deeper areas of the system are 
subject to seasonal hypoxic and anoxic events.  There is a relatively strong freshwater influence, 
with multiple large river inputs in the system, as well as numerous small tributaries (> 100,000 
streams, creeks and rivers).  Chesapeake Bay is just north of a major biogeographic break, 
consequently there is seasonal variation in animal populations with southern populations 
present during summer and more northerly populations predominating in fall-spring.  Most Bay 
populations migrate out of the system at some point during the year, consequently, their 
populations are subject to mortality outside the system, and the parameterization and 
simulation of such groups can be problematic.  The Chesapeake has some of the most extreme 
ranges of water temperature for any coastal system; winter extremes can be as low as 1ºC.  
Because of the lack of deep water refuge from such temperature extremes, the relatively few 
species that remain throughout the year become mostly inactive or enter torpor during this 
portion of the year.  Marsh, submerged aquatic vegetation (SAV), and oysters all provide 
habitat important to the functionality of the Chesapeake system.  However, over the last three 
decades, marsh and SAV have been declining steadily due to high nutrient loads, development, 
shoreline hardening and coastal inundation associated with climate change.  Once abundant 
oysters were responsible for large reef tracks that dominated Bay habitat and affected 
circulation patterns, but oysters are now nearly extirpated from the system (Wilberg et al. 
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(2011) estimates the current population is less than 1% of the original population in Maryland).  
Humans have a long history of exploitation in the Chesapeake, and the current system is highly 
modified compared to that of the early 1800's due to heavy oyster harvests by dredging.  
Harvest rates from both the commercial and recreational sectors remain high for a variety of 
species including fish, shellfish and birds.   
 
It has been a challenge to balance the complexity of the model necessary to capture the most 
critical dynamics of the system with the simplification necessary to allow reasonable run times.  
The current model incorporates the 7 largest tributaries (brackish portions only), and 
incorporates 97 spatial polygons that vary in depth, salinity, and bottom type (mainstem only) 
characteristics.  The resulting model resembles a rough cartoon of the Bay (Figure 2).  The 
model has 5 depth layers (including 1 sediment layer).  
 

  
Figure 2.  CAM polygons; (a) 97 spatial 'boxes'  (b) detail of two southernmost tributaries.   
 
 
CAM includes 55 biological groups, including 26 invertebrate and 29 vertebrate groups.  Three 
of these groups also function as biogenic habitat (submerged aquatic vegetation, oyster), and 
provide refuge for animals to decrease their predation mortality.  Like other Atlantis models, 
CAM also simulates 4 bacterial groups (attached and free-living water column bacteria, and 
aerobic and anaerobic benthic bacteria in the sediments) for bacterial cycling of available 
nutrients and 3 detrital groups (refractory, labile, and carrion).   
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Physical forcing in the current model is driven by the Navy Coastal Ocean Model (NCOM) 
Relocatable Model.  NCOM has a horizontal resolution of 1/30 degrees, roughly 3 km in the 
CAM domain (http://ecowatch.ncddc.noaa.gov/amseas/) . The Hybrid Coordinate Ocean Model 
(HYCOM) provides boundary conditions, and atmospheric forcing is from Coupled Ocean-
Atmosphere Mesoscale Prediction System (COAMPS). Tidal forcing is included.  NCOM is, in 
essence, a summary of Regional Ocean Modeling System (ROMS) model output.  Current work 
is underway to drive CAM with a full ROMS model.   
 

Focal Project for Multiple Model Inference 

Objective 

Recently, the EPA-National Center for Environmental Economics (NCEE) enlisted the support of 
the NCBO Modeling and Analysis Team to aid with estimating the impacts of Chesapeake Bay 
Total Maximum Daily Load (TMDL) Regulations on Chesapeake Bay Fisheries.  This is part of 
larger project by the NCEE to do a cost-benefit analysis of the TMDL. 
 
The purpose of this analysis is to assess the impacts of eutrophication on the major fisheries of 
the Chesapeake Bay and estimate the potential economic benefits to the fisheries associated 
with reduced nutrient loading prescribed in the Total Maximum Daily Load (TMDL) regulations 
for the Bay. 
 

Chesapeake Bay 

The Chesapeake Bay is the largest estuary in the continental United States, located midway 
along the Atlantic coast of the United States. The surface area of the tidal portion of the 
Chesapeake Bay system is approximately 10,000 km2, while the area including tributaries is 
estimated to be 18,580 km2. More than 20 major tributaries drain into the Bay from a 
watershed that stretches across six states: New York, Pennsylvania, Maryland, Delaware, 
Virginia, West Virginia, and the District of Columbia. The largest of these tributaries, the 
Susquehanna River, provides more than half of the freshwater flow to the Bay. The waters of 
the Chesapeake Bay and tidal portions of its tributaries are governed by Maryland and Virginia. 
 
The Bay is a partially mixed estuary, with an average tidal range of approximately 1 m at its 
mouth to less than 30 cm at its head (cited in 1989). Salinity within the Bay ranges from less 
than 0.5 ppt at its northern extreme to 32 ppt near its mouth. The Bay can be divided into three 
major salinity regions: oligohaline (0-5 ppt), mesohaline (6-18 ppt), and polyhaline (> 18 ppt). 
Water temperatures in the Bay vary greatly throughout the year, reaching 28-30ºC in late 
summer and 1-4ºC in late winter (Murdy et al., 1997). 
 
The estuarine circulation pattern of a flow of deeper, more saline water into the Bay from the 
Atlantic Ocean—which serves to transport larval fishes and crabs from the ocean to their 
nursery habitats—alternates with a flow of shallower, fresh water originating from surface 
runoff and precipitation out of the Bay—which serves to transport juvenile fishes from 
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tributaries to the coastal waters of the Atlantic. This transport mechanism is very important to 
the population dynamics of many Bay species. 
 
The mixture of freshwater from the tributaries and seawater from the coastal ocean creates 
and maintains a variety of brackish habitats within the Bay. Tidally influenced habitat types in 
the Bay include: pelagic waters, nearshore littoral areas, and the benthic zone. Littoral habitats, 
such as marshes on intertidal lowlands, aquatic grass beds in the shallow flooded flatlands, and 
oyster reefs, are highly productive, serving as nursery areas to many fish and shellfish species, 
facilitating rapid growth under relatively protected conditions. The diversity of habitats within 
the Chesapeake Bay system enables it to support nearly 3,000 species of plants and animals 
within its waters and tidal margins.  

Chesapeake Bay Fisheries 

Finfish species inhabiting the Chesapeake Bay have a wide variety of life history strategies. For 
example, the American eel (Anguilla rostrata) is a catadromous species, spending most of its 
life in tributaries of the Chesapeake Bay, returning to the Atlantic Ocean to spawn. Some 
marine fishes, like the weakfish (Cynoscion regalis) enter the Bay to feed and spawn seasonally 
and then return to the coastal ocean. Anadromous species, like the American shad (Alosa 
sapidissima) and striped bass (Morone saxatilis) spend most of their adult lives migrating in the 
Atlantic Ocean, but return to Bay tributaries to spawn. Other species, like the white perch 
(Morone americana) spend their entire lives within the Chesapeake Bay system, undergoing 
‘semi-anadromous’ seasonal migrations within the Bay.  
 
The diversity of habitats within the Chesapeake Bay, combined with wide ranges of 
temperatures throughout the year, result in very dynamic seasonal changes in fish 
assemblages. During late summer and early autumn, fish diversity reaches its maximum due to 
a movement of tropical species into the lower portion of the Bay. When the cooler 
temperatures of autumn arrive, most marine fish within the Bay begin to migrate either south 
to Cape Hatteras, North Carolina, or offshore to the edge of the continental shelf. During 
winter, the abundance and diversity of fish in the Bay is relatively low. However, by early spring, 
abundance and diversity rebound significantly as anadromous species enter the Bay, followed 
soon after by the warm-temperate and subtropical summer residents. 
 
Due to the complexity of the Chesapeake Bay ecosystem, it is necessary to develop EM tools to 
simulate interactions between these many different species, to quantitatively estimate how 
they interact within the larger food web and how human impacts are likely to affect this 
complex system. 
 
Since the early 1800s, the Chesapeake Bay has supported a variety of large-scale commercial 
and recreational fisheries of both finfish and shellfish. The predominant invertebrate fisheries 
in the Chesapeake Bay have included the eastern oyster (Crassostrea virginica), blue crab 
(Callinectes sapidus), soft clam (Mya arenaria), and hard clam (Mercenaria mercenaria). The 
large-scale finfish fisheries have included striped bass, American shad, river herring (Alosa 
aestivalis), white perch, bluefish (Pomatomus saltatrix), Atlantic menhaden (Brevoortia 



 56 

tyrannus), summer flounder (Paralichyths dentatus), weakfish, Atlantic croaker (Micropogonias 
undulates), and spot (Leiostomus xanthurus). Several species, like white perch and Atlantic 
croaker, have sustained significant harvest levels, although trends in the commercial and 
recreational landings have varied over the last several decades. Striped bass landings may be 
the most dramatic in terms of variability from the 1960s to present. Many species, such as the 
eastern oyster, American shad, and striped bass, have suffered overexploitation in the 
Chesapeake Bay. Overfishing and the collapse of several Bay and coastal fish stocks during the 
1900s prompted the creation of fisheries management agencies both along the Atlantic Coast 
and within the Chesapeake Bay. 
 
In coastal areas, the Atlantic States Marine Fisheries Commission (ASMFC) serves as a 
deliberative body, coordinating the conservation and management of fisheries in near-shore 
state waters along the eastern seaboard from Maine to Florida (to 4.8 km or 3 miles off the 
coast). The Mid-Atlantic Fishery Management Council (MAFMC) is responsible for managing 
fisheries in federal waters, which occur predominantly off the mid-Atlantic coast (from 4.8 to 
322 km or 3 to 200 miles offshore). Within the Bay, tidal fisheries are managed on a 
jurisdiction-specific basis, by the Virginia Marine Resources Commission (VMRC), the Maryland 
Department of Natural Resources (MD DNR), and the Potomac River Fisheries Commission 
(PRFC). The three jurisdictions have agreed upon management strategies, as outlined in 
Chesapeake Bay fisheries management plans, for commercially and recreationally targeted 
species within the tidal portion of the Chesapeake Bay. 
 

Chesapeake Bay Water Quality 
The 1972 Clean Water Act (Section 303(c)) requires states and the District of Columbia, to 
establish water quality standards (WQS) that identify each waterbody’s designated uses and 
the criteria needed to support those uses. “The CWA establishes a rebuttable presumption that 
all waters can attain beneficial aquatic life uses, i.e., fishable and recreational (i.e., swimmable) 
uses.”  
 
 Though an extensive restoration effort has been underway in the Chesapeake for over 25 
years, inadequate progress on attaining water quality standards has been made. As a result, the 
U.S. Environmental Protection Agency (EPA) established the Chesapeake Bay Total Maximum 
Daily Load (TMDL) —the largest ever developed by EPA. This TMDL identifies the pollution 
reductions (for nitrogen, phosphorous, and sediment) necessary across the entire Chesapeake 
Watershed to meet applicable water quality standards in the Bay and its tidal rivers and 
embayments. These pollution limits are further divided by jurisdiction and major river basin 
based on a suite of watershed-water quality modeling tools, monitoring data, and collaboration 
with state and regional partners. 
 
The TMDL is intended to make sure that all pollution control measures needed to fully restore 
the Bay, tidal rivers, and embayments are implemented by 2025.  The TMDL is focused on 
meeting criteria that ensure the tidal waters are capable of supporting the designated uses of 
the bay (esp., key finfish and shellfish habitats). 
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In addition to the assessment of eutrophication effects, this modeling approach will allow us to 
assess the effectiveness of TMDL on fisheries production. This work will establish a framework 
for translating changes in nutrient loadings to changes in ecological production and changes in 
an important class of ecosystem services, the support of commercial and recreational fisheries 
production, provided by the Chesapeake. 

Ecosystem Modeling Approach 

The purpose of this analysis is to assess the impacts of eutrophication on the major fisheries of 
the Chesapeake Bay and estimate the potential economic benefits to the fisheries associated 
with reduced nutrient loading prescribed in the Total Maximum Daily Load (TMDL) regulations 
for the Bay. 
 
The initial approach for this analysis was centered on linking multiple Models. We used nutrient 
load output for the EPA’s Estuarine Eutrophication model 
(http://www.chesapeakebay.net/about/programs/modeling/) to drive ecological rates (e.g, 
production) in the CBFEM.  The linking of these models was run in a few different scenarios in a 
factorial design. The first level of scenarios was focused on nutrient loads (with and without 
TMDL regulations implemented), and the second level was focused on how changes in nutrients 
influence secondary production (Nixon’s agricultural model and a production shunt model).  
The biomass change in key fish species between the nutrient load scenarios was the output 
used for economic models to estimate benefits associated with TMDL loads.   Two economic 
models were used – a multi-stage inverse demand system to estimate benefits to consumers in 
commercial fish markets and a random utility site-choice model to estimate benefits to 
recreational fishers. 
 
Because adequate quantitative information about the influence of water quality parameters on 
fish population dynamics was not available for parameterizing available ecological models and 
because the model scenarios on how changes in nutrients influence secondary production were 
too general, the results from the initial approach were too divergent to be informative.  As a 
result, we have outlined a new approach.  The new approach involves using 3 different 
ecosystem models (the CBFEM, CAM, and a first-order ecosystem model of key fisheries 
species).  In addition, the new approach uses output from the EPA’s Estuarine Eutrophication 
model more thoroughly. 
 
To estimate the water quality influences, we have developed habitat volume models based on 
water quality (salinity, temperature, and dissolved oxygen) parameter estimates from the 
Eutrophication model and species tolerances for these parameters from literature review. 
Estimates from the habitat volume will be used to force two different fisheries ecosystem 
models, a simple fisheries ecosystem model based first order species interactions and the 
CBFEM, an ecotrophic fisheries model.  Two fisheries ecosystem models were used to account 
for the structural uncertainty of the models.  In these ecosystem models, time-varying water 
quality conditions will be used to drive changes in the habitat volumes of the fished species. 
Specifically, habitat volume changes will drive changes in the population production rates and 
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changes in the overlap of habitat volumes of predator-prey pairs drove changes in the 
interaction rates. In addition, the CBFEM will include habitat volume forcing functions for non-
fisheries species (e.g., zooplankton, benthic invertebrates) in the ecosystem.  To assess the 
impacts of TMDL regulation on the fisheries, these models will be run using habitat volumes 
calculated from the Eutrophication model based on watershed scenarios with and without the 
TMDL Watershed Implementation Plans and assuming constant fishing rates.  The biomass 
change in key fish species between the nutrient load scenarios will be the output used for 
economic models. 
 
CAM is better-suited to incorporate water quality changes directly.  For this model, nutrient 
loadings (i.e., concentration rates, including Ammonia, Nitrate-Nitrite, and total suspended 
solids) from the EPA’s Chesapeake Watershed model are aggregated into CAM’s spatial boxes.  
Along with initial concentrations for each nutrient, these loadings drive the biogeochemical 
cycles simulated in CAM, and in turn, drive the growth rates and interactions of the trophic 
groups in the model.  The biomass change in key fish species between the nutrient load 
scenarios is the output used for economic models. 
 
Using 3 different ecosystem models (with wide variety in the level of complexity) for this 
analysis will enable some level of accounting for uncertainty in model structure uncertainty.   
Ultimately, we want to be able to combine the outputs from these models (biomass change in 
key fish species between the nutrient load scenarios) to adequately propagate the uncertainty 
in the output for use in the economic modeling approaches and provide reasonable estimates 
of the benefits of the TMDL regulations to Chesapeake fisheries. A schematic of this multi-
model approach is presented below. 
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Summary of Center MMI in EM Efforts 

AFSC 
Kerim Aydin reported for the AFSC and focused on a couple of projects underway or planned at 
this center.  
The AFSC has developed an operational ensemble of models, including an EwE model, a 
multispecies statistical model, the FEAST (Forage Euphausiids Abundance in Space and Time) 
model and an IBM (GOAIBMS). 
Primary Issues addressed at the AFSC include: (1) climate change; (2) oil and gas exploration (in 
the Arctic); (3) the conservation of endangered species (Stellar Sea Lions); and (4) groundfish 
interactions (optimal yield, multispecies management, MSEs).  
Climate change is a major issue in Alaska. Specific attention is given to the potential impacts of 
climate change on sea temperatures and seasonal sea ice, which influences the abundance of 
ice algae. Ice algae are of critical importance to early reproduction in copepods; copepods have 
higher ingestion rates when feeding on ice algae than when feeding on ambient water column 
phytoplankton. Moreover, cold years favor increases in abundance of large zooplankton at the 
expense of decreases in the abundance of small zooplankton. 
 
The Bering Sea Project (BEST/BSIERP) is an end-to-end framework which links: (1) climate 
scenarios to physical oceanography (ROMS; 10km grid with 10 depth layers); (2) physical 
oceanography to lower trophic levels (nutrients, phytoplankton and zooplankton); (3) lower 
trophic levels to upper trophic levels (FEAST); and (4) upper trophic levels to economics and 
spatial fisheries. The Bering Sea Project has required a good amount of field work. Some of the 
primary objectives of the Bering Sea Project are to: (1) evaluate recruitment and how 
recruitment is correlated with climate; (2) understand interactions between plankton and fish 
under climate change; (3) understand interaction between mean summer SST and pollock 
survival; (4) look at the past and the future using IPCC climate forecasts; and (5) compare 
multiple models and figure out how to conduct MMI.   
 
Work conducted for the Bering Sea Project allows the evaluation of “potential” recruitment 
using three different approaches. The first approach consists in: (i) correlating single species 
recruitment from stock assessment to measured ocean conditions (SST, bottom temperature, 
wind, surveyed predators); and then (ii) running forecasts using correlates and error 
“measured” from IPCC climate models. The second approach consists in: (i) running a ROMS-
NPZ high resolution 3D model using measured ocean conditions; then (ii) evaluating 
correlations with recruitment from multispecies assessment; and then (iii) running forecasts 
using correlates and errors from the ROMS-NPZ model driven by IPCC climate models. Finally, 
the third approach consists in: (i) running a ROMS-NPZ high resolution 3D model using 
measured ocean conditions; then (ii) running a FEAST mechanistic fish model with feedback to 
plankton; and then (iii) running a FEAST model driven by IPCC climate models.  
Currently, comparison of reference points based on management strategies uses only the best 
model from a stock assessment but it would be interesting to use MMI in the near future. 
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A spatial economics toolbox for fisheries called “FishSET”was created to better inform policy 
decisions by predicting how a variety of factors might influence fishers’ behavior.   
 

NWFSC 
Isaac Kaplan reported projects related to MMI, model linkages and ensemble modeling that are 
underway or planned at the NWFSC. These projects include: 

1) J-SCOPE – a seasonal forecast system model, which uses a 6-9 month forecast to drive a 
ROMS-NPZ model. The outputs from this model can be found on the NANOOS website. 
The model is not yet running on a scale of decades but rather a few months. Currently, 
J-SCOPE forecasts are input in a GAM used to predict sardine presence (over a 6-8 
month time frame).  This forecasting platform may be potentially useful for several 
other LMR issues. 

2) Salmon population projections – freshwater and marine climate projections to get parr-
to-smolt survival in the 2040s.  There is currently no information on climate projections 
for nearshore marine areas.  For these areas, recent history is used to derive a scenario 
based on the Pacific decal oscillation (PDO). 

3) Forage fish in the California Current ecosystem – 4 models have been developed and it 
would be good to use a combination of these models.  Atlantis and EwE were used to 
investigate the impacts of depleting forage fish for the California Current. Convergences 
and divergences in models’ output were analyzed. Two other ecosystem models are also 
going to be utilized to assess how depletion of forage fish impacts the California Current 
food web in a context of climate change: (i) the Northern California Current ECOTRAN 
model; and (ii) the highly sophisticated NEMURO-SAN model.  

4) Coupled economic-ecological models – IOPAC (Input-output model for Pacific Coast 
Fisheries modeling framework to look at the direct and indirect impacts of fisheries 
management decisions on economy and employment. IOPAC was linked with Atlantis to 
examine the impacts of fishery management decisions to the greater economics of the 
region. Atlantis needed to be re-coded to include fleet dynamics and predict spatial 
fishing effort, catch, bycatch and profits under different management schemes. 

 

SWFSC 
Brian Wells reported that the center is largely in a capacity building mode and focuses on 
linking models. The major efforts include: 

1) Salmon Life Cycle – coupled bio-physical models across the chinook salmon landscape – 
Three different coupled models were designed: (1) a ROMS-CoSiNE model for the 
coastal ocean; (2) a SELFE – CoSiNE model for the San Francisco estuary; and (3) a RAFT-
Aquato model for the Sacramento River. These thee coupled models were coupled to a 
salmon DEB model (considering all life stages, i.e., eggs and larvae, juveniles and adults) 
so as to predict salmon growth and maturation. The hard part of the work was linking 
estuarine and ocean systems due to disparate spatial resolutions. The authors are 
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validating the models by comparing ROMS to observed data. The group is moving 
towards data assimilation of biological data.  

2) Habitat – ROMS-NEMURO outputs put into GAMs to evaluate good/bad recruitment for 
a few species.  The purpose of this approach is to determine how ocean environment 
changes habitat suitability. 

3) Rockfish/Antarctic krill – high resolution prey-predator model, essentially used to 
simulate the growth of rockfish larvae released into the plankton at different times 
during the winter parturition season. 

 

PIFSC 
Jeff Polovina reported that the PIFSC primarily use EwE and a Size-based Food Web Model 
focusing on the central pacific pelagic ecosystem in the context of climate change. Both models 
are driven by the GFDL climate models.  Phytoplankton time series were input in both EwE and 
the Size-based Food Web Model. EwE and the Size-based Food Web Model were primarily used 
to track changes for tuna, shark and large fish (e.g., mahi mahi) populations, under different 
exploitation and climate scenarios. EwE and the Size-based Food Web Model agreed on the 
impacts of fishing and climate change on the percent of large fish caught. By contrast, climate 
change impacts on the age structure of fish species are different between the two models. The 
Size-based Food Web Model shows changes in age structure over time related to climate, while 
EwE shows no change in age structure. 
 
Other efforts at the center include: 

1) Extending EwE and the Size-based Food Web Model using output from multiple climate 
models;  

2) Comparing the output of a single-species Pacific swordfish stock assessment model to 
that of a SEAPODYM swordfish model;  

3) Building an Atlantis model for Guam;  
4) Modifying the French Frigate Shoals islands EwE model to evaluate the impacts of future 

climate on seals; 
5) Using models to determine the influence of environmental variables on the carrying 

capacity of Pacific reef sharks;  
6) Using models to evaluate the influence of environmental variables on the nesting of 

Japan and Florida Loggerheads (lagged by ~25 years).  
 

NEFSC 
Michael Fogarty reported EM efforts that are underway or planned at the NEFSC, focusing on 
the Georges Bank prototype Multispecies Assessment. The Georges Bank prototype 
Multispecies Assessment is a collaborative effort between various groups within the NEFSC, 
which attempts to provide a natural bridge between single-species assessment and ecosystem 
considerations for managers. A Multispecies approach may alleviate the number of efforts 
required for multiple single-species assessments.  
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The different steps of the Georges Bank prototype Multispecies Assessment consist of: (1) 
developing and maintaining data streams (observations, food habits data, environmental and 
climate data); (2) using data to feed assessment models; (3) using social and economic 
modules; (4) running forecasts models; (5) producing indicators and summarizing results 
through visualization tools; and (6) using operating models and risk analysis to be able to 
provide recommendations and web-based products. 
 
Within the project, EwE, Atlantis and a length-based multi-species model (Hydra) are used as 
operating models. Stock assessment models include: (i) a multispecies production model; (ii) a 
functional group production model; (iii) a multispecies delay-difference model; and (iv) a 
multispecies statistical catch-at-age model. Economic modules consist of revenue and net 
profitability models and portfolio models. Finally, forecasting models use nonparametric 
nonlinear time series analysis.  
The project looks to take novel approaches using food web diet as either direct model inputs or 
more as auxiliary data (i.e., Bayesian priors). 
Hydra is a multispecies, size-structured model. It takes into account the impact of environment 
on growth, maturity and fecundity and considers multiple recruitment functions. Maximum 
likelihood is used to tune the model. Spatial and multi-fleet aspects must be developed for the 
model.  
 
The multispecies production assessment model (i) uses flexible functional relationships for 
within species interaction dynamics (predation: type I, II, and III functional response; 
competition); (ii) incorporates environmental covariates; (iii) has a spatial structure (allows for 
movement between regions); (iv) uses multiple estimation methods (maximum likelihood, 
genetic algorithms, Bayesian methods).   
The objectives for the Georges Bank prototype Multispecies Assessment for the coming year 
are to: (1) have operating models ready for full simulation testing of assessment models and 
management procedures; (2) have assessment models fully operational with a spatial structure 
included; (3) have linked models to economic modules; (4) have identified key indicators to 
complement models and to offer alternative approaches; (5) apply MMI (using a weighting 
scheme or not); and (6) have developed a novel data visualization tool with academic partners. 

NCBO 
Howard Townsend reported that the team has multiple efforts addressing several issues in the 
region. The primary MMI effort is a Total maximum daily load: Cost-benefits study. As nutrient 
loads are decreased through water quality regulations, it is important to understand how the 
removal of nitrogen may have some positive impacts (e.g. water quality) and some negative 
(potential loss of primary productivity). This is moving into the realm of ecosystem 
management.  
The components of this project are:  

1) EPA’s Chesapeake Eutrophication Model (CEM) is the basis for ecosystem models used 
to assess habitat volume changes associated with regulation-based changes in nutrient 
loads. 
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2) Habitat volume models based on CEM and species preferences for salinity, temperature 
and dissolved oxygen. 

3) Application of habitat volume models to multiple single species models. 
4) Application of habitat volume (and habitat overlap) to production and consumption 

equations in the Chesapeake Bay Fisheries Ecosystem Model (CBFEM) – based on EwE – 
with built in forcing functions. 

5) EPA’s Chesapeake Watershed Model (CSM). 
6) Application of nutrient loads from CSM to Chesapeake Atlantis Model (CAM) 
7) Outputs from single species models, CBFEM, and CAM will be fed into economic models 

estimating the commercial and recreational values of Chesapeake fisheries. 
 

SEFSC 
Arnaud Grüss reported that EBFM is now a central paradigm in the Gulf of Mexico and an IEA 
has recently been initiated. In March 2013, the Gulf of Mexico Fisheries Management Council’s 
Standing and Ecosystem Scientific & Statistical Committees passed two motions expressing 
their desire to incorporate IEA products into single-species stock assessments and LMR 
management decisions on a regular basis. 
Simulation models used by SEFSC include 2 EwE (‘WFS Reef fish EwE’ and ‘WFS Red tide EwE’) 
and 1 OSMOSE model for the West Florida Shelf (‘OSMOSE-WFS’). OSMOSE-WFS is the first 
OSMOSE model developed in the US. MMI using OSMOSE-WFS, WFS Reef fish EwE, WFS Red 
tide EwE and other ecosystem models is underway.  
Another EwE model was designed to measure the impacts of large coastal sharks.  Other 
ecosystem models have been developed for the Gulf of Mexico, including an Atlantis model for 
the whole Gulf of Mexico, a Galveston Bay EwE model, a South West Florida ecosystem model, 
a Red Tide SS model for gag grouper, population models coupled to a watershed model for 
Galveston Bay, and other models.   
 
Three types of MMI are being or are going to be used at the SEFSC: 

• Reference set of OMs –A reference set of OMs is built from a single simulation model. 
Each OM is a version of the simulation model representing a plausible “state of nature”. 
Using a reference set of OMs is useful to address parameter uncertainty, process 
uncertainty or future uncertainty.   

• Inter-model comparisons – They involve models with different structure and 
assumptions. However, inter-model comparisons require models being compared to 
share a number of characteristics depending on the questions that need to be 
addressed. Inter-model comparisons offer different perspectives on the same questions, 
while being able to identify from where discrepancies between the different models 
being used may originate. They address model uncertainty.  

• Ensemble modeling – Framework exposing an ensemble of simulation models with 
different structure and assumptions to identical exploitation and environmental 
scenarios, using multiple realizations of each exploitation scenario and each 
environmental scenario. Ensemble modeling addresses model, process and future 
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uncertainties. Ensemble modeling are useful to disentangle model and process 
uncertainties from future uncertainty by comparing results among models within a 
single climate-exploitation realization, and within models among climate-exploitation 
realizations, respectively  
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Abstracts of Invited Speakers Presentations 
 

Ecosystem Modeling – Lessons from Seasonal Weather Prediction  
Nicholas A. Bond  University of Washington/JISAO 
 
This paper has two objectives: (1) to review current practices in seasonal weather prediction 
and (2) to summarize some recent examples of the use of climate models for marine ecosystem 
projections.  An individual model simulation has uncertainty from two sources: initial condition 
sensitivity, and with model formulation (including but not just parameterizations), sometimes 
termed “structural uncertainty”.  The chaotic nature of non-linear systems means there are 
fundamental limits on the horizons over which phase changes are predictable.  The second 
source of error, the structural uncertainty, tends to dominate the uncertainties associated with 
initial conditions for longer-term forecasts.  Multi-model ensembles are being used to reduce 
the errors and uncertainties from individual models.  Techniques have been developed that 
allow dynamic evolution of model combinations for shorter-term predictions, but it is uncertain 
whether they add meaningful value to longer-term projections.  In particular, the relative 
performance of models based on comparisons between hindcast simulations and observations 
varies substantially with region, parameter, and specific period of simulation. The ambiguity in 
the evaluation of competing models, and that past performance does not guarantee future skill, 
may mean there is no clear “best” method for handling model error.  Both dynamical and 
statistical downscaling have their place in modeling marine ecosystems; the latter generally 
offers the opportunity to more completely assess the potential ranges of outcomes. 
 
 

Uses, Strengths, and Weaknesses of Numerical Models in Tropical Cyclone 
Forecasting 
Jack Beven, NOAA/NWS/NCEP/NHC 
 
The National Hurricane Center (NHC) uses a variety of numerical weather prediction 
models to forecast the location, intensity, and size of tropical cyclones. The models 
range in complexity from simple statistical based on past cyclone behavior to complex 
dynamical based on integration of the equations of atmospheric dynamics. The NHC 
routinely uses a multi-model ensemble in its operations, although single-model ensembles 
are playing an increasing role. The increasing skill of the guidance models has led to 
significant decreases in NHC track forecast errors over the last 25 years. The NHC 
keeps statistics on its track, intensity and size forecasts, and these are used in such 
products and the cone of uncertainty and the wind speed probabilities. 
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Ocean Ensemble Modeling: Applications for Ecosystem Modeling & Prediction 
Alan Leonardi, NOAA/OAR/AOML 
 
Across disciplines, models help scientists to understand systems and communicate processes 
and relationships in those systems. Models are not perfect and are subject to error and bias. 
Thus they require data for validation and fine tuning. Models are useful for clarifying gaps in 
understanding, identifying areas where additional information (e.g. observations) are needed, 
and identifying areas where additional model improvements are needed. The goal for 
developing good, useful models is to produce models with low bias and low variance. As model 
complexity increases variance increases. Conversely as complexity decreases bias increases.  
Modelers must optimize model complexity to achieve the best performance. To ensure model 
utility, ocean modeler use ensemble approaches and use models to assess the impact of 
observations on model forecasts. Ocean modelers use 1) single model ensembles – a single, 
deterministic model is run with a variety of configurations and combined to address a single 
problem, 2) multiple model ensembles – multiple diverse models are trained on the same 
problem and outputs combined to form consensus viewpoint – to account for the bias and 
error in models.  They use 1) Observing System Evaluations (OSEs) - the systematic 
withholding of observations from assimilating systems to quantify the degradation of the 
system’s performance when those observations are neglected – and2) Observing System 
Simulation Experiments (OSSEs) – modeling experiments used to evaluate the impact of 
new/proposed observing systems on operational forecasts – to improve observation and data 
collection systems for models. 
 
In the Gulf of Mexico Oil of 2010, the use of multiple models for predicting the spread of oil 
helped with the oil spill response.  However, some stakeholders focused on the results of one 
model with extreme estimate in the spread of oil and caused some undue alarm. 
 

Biological Ensemble Modelling in the Baltic Sea 
Stefan Neuenfeldt, Denmark Technical University - Aqua 
 
With reference to: 
Anna Gårdmark, Martin Lindegren, Stefan Neuenfeldt, Thorsten Blenckner, Outi Heikinheimo, 
Bärbel Müller-Karulis, Susa Niiranen, Maciej T. Tomczak, Eero Aro, Anders Wikström, and 
Christian Möllmann 2013. Biological ensemble modeling to evaluate potential futures of living 
marine resources. Ecological Applications 23:742–754. http://dx.doi.org/10.1890/12-0267.1 
 
Informed natural resource management requires approaches to understand and handle sources 
of uncertainty in future responses of complex systems to human activities. In Gårdmark et al. 
2012 We simulated the long-term response of Eastern Baltic cod (Gadus morhua callarias) to 
future fishing and climate change in seven ecological models forming a gradient in food-web 
complexity, from single-species to food-web models. We modified the models to include 
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climate forcing, and created identical fishing and climate scenarios that we simulated in all 
models to study the potential dynamics of Eastern Baltic cod during 2009-2100.  
 
The seven models, ranging from single-species to food-web models, differed in their simulated 
responses of cod to fishing and future climate change. By decomposing the model ensemble 
into sub-sets according to key ecological assumptions we showed that species interactions 
feedbacks greatly influence the simulated responses to fishing and climate change.  
 
Sources of uncertainty (or differences) in simulated species responses can be sought in two 
steps. First, the model ensemble can be used to contrast the variation in responses stemming 
from statistical uncertainty in climate scenarios to that from differences in ecological model 
assumptions (i.e., model structure uncertainty). For example, the large range of simulated cod 
SSB for the low fishing and no climate change was caused only by differing assumptions among 
ecological models, as the results are based on a single climate realisation. In contrast, a 
comparison across climate realisations of the same scenario showed that this variation alone 
results in 19-97% CV of simulated SSB. Secondly, sources of structural model uncertainty should 
be sought. That is, model assumptions with key influence on the simulated responses are 
identified by contrasting different categories of models within the ensemble against each other. 
This showed the key influence of model uncertainty in relation to predator-prey interactions. By 
using the ensemble approach accounting for both types of uncertainty, we showed that models 
without stabilising feedbacks between cod and their prey both show more fluctuating 
responses to fishing, within a given climate scenario, and are more sensitive to the statistical 
uncertainty of climate projections. 
 
Ecological model assumptions can be identified as having key influence on the variation in 
simulated futures based on two aspects, (1) those creating large disparities in responses among 
models within a given climate realisation, and (2) those affecting the extent to which the 
ecological models magnify or dampen the underlying variation in simulated future climates. For 
both aspects, an ensemble of models that cover a range of complexity in terms of species 
interactions is necessary, and for the latter, the ensemble needs to be analysed across climate 
realisations. In our example, the assumption of no effects of prey availability on cod and the 
assumption of environmental forcing acting through an explicit stock-recruitment relationship 
rather than implicit recruitment and population level forcing, appears to be key. 
 
While the ensemble modelling needs to be further refined for the case of cod (for example, by 
enlarging the model ensemble to include models that have either an explicit stock-recruitment 
function or lack prey feed-backs on cod, and not only the combination), it illustrates how the 
ensemble approach can be used to identify key processes. These can then be used to guide 
further model development, as well as experimental tests of key mechanisms. For example, our 
results raise the question of the degree to which cod is limited by fish prey and zooplankton 
availability. To indeed enable identification of key processes, ensembles need to be composed 
of models of different sets of ecological processes, rather than alternative numerical 
implementations of essentially identically described processes as is commonly done in climate 
studies. 
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By compiling the model simulations in an option table we evaluated the impact of fishing under 
future climate change, and showed that in all models intense fishing prevented recovery and 
climate change further decreased the cod population. 
 
The outcome, and eventually the conclusions, of ensemble modelling of species responses to 
future climate and human use obviously depend on ensemble members. Our results showed 
the great influence of the composition of the ensemble for the mean, range, and temporal 
pattern of simulated responses of cod to climate change and fishing. Correspondingly, methods 
used to create weighted ensemble averages have large effects on, for example, simulated mean 
responses. While an ensemble mean can be used to highlight general directions of responses, it 
can easily be misunderstood as a possible trajectory of the simulated species’ response. 
Because the mean response shows much smaller inter-annual variation than the individual 
model simulations, the species’ dynamics may look misleadingly stable when judged from the 
ensemble mean. Yet, ensemble means, and in particular means weighted by, for example, past 
performance of the models, are often used and proposed. However, averaging the simulated 
responses may also hide qualitative differences, like extinctions in our case, and should 
therefore be avoided. Instead, it is the range of simulated responses that forms important 
information for e.g., management, and the impact of varying ensemble membership should be 
assessed.  
 
But if we cannot provide average responses to exploitation and climate change, what part of 
the simulated range should decisions on management actions be based on? The solution is to 
look for management actions that are robust to the uncertainty in model structure. Robust 
management has been proposed as a solution to handle uncertainty (in general) in marine 
fisheries, and is often applied in management strategy evaluations. Although the concept can 
be applied within a single model, the ensemble approach is particularly suitable for seeking 
management solutions that are robust to uncertainties relating to food-web processes. Option 
tables provide an example of how robust conclusions on management impacts can be sought; a 
compilation of comparisons within models of simulated responses in relation to specified 
reference (or target) levels enables a check for robustness across all models. Note that 
robustness is thus based on individual responses of all models, and not on the mean response 
of the ensemble. Moreover, because comparisons are made within models, results from both 
qualitative and quantitative models can be included. In our case, the general conclusions are 
quite simple, intense fishing prevents rebuilding of the fish population and risks extinction, 
whereas less fishing, at the lower target fishing mortality, does not. The strength lies in that 
these conclusions are indeed general, as they are valid independent of whether we are using a 
simple single-species biomass model or a full food-web model, and for all climate variability 
tested. Thus, successful management of exploitation no longer becomes a question of which 
model to rely on, but which management actions that should be taken based on common 
knowledge from all available models. 
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Iterate and collaborate: mingling ecosystem service models to inform decisions 
Katie Arkema, The Natural Capital Project 
 
In the traditional narrative, people put pressure on the environment. But if we instead focus on 
all of the rich and diverse ways that ecosystems sustain and fulfill human life, we can close this 
loop to better understand how the environment benefits people and direct investments, 
resource management & decision-making to promote sustainability of natural environments 
and foster human wellbeing at the same time. There have been lots of recent calls for 
sustaining environmental capital and incorporating benefits from nature into policy, but how do 
we move beyond words to action? Design our research questions based on what questions we 
hear from the stakeholders, policy and decision-makers and local partners. This presentation 
provides an example of the iterative and collaborative approach applied in Belize.  This 
approach ensures that scientists understand policymakers’ needs and policymakers understand 
the tools and models being used. 
 
With reference to: 
“Identification and valuation of Adaptation Options in Coastal-Marine Ecosystems: Test case 
from Placencia, Belize.” Rosenthal, A., Arkema, K., Verutes, G., Bood, N., Cantor, D., Fish, M., 
Griffin, R., and Panuncio, M., (2013). Identification and Valuation of Adaptation Options in 
Coastal-Marine Ecosystems: Test case from Placencia, Belize. The Natural Capital Project, 
Stanford University, World Wildlife Fund. 
 
Climate change is expected to have numerous consequences for human health and welfare 
over the long term. Over the medium term, we can mitigate some of the most costly impacts by 
adapting to the environmental changes that will occur as a result of increasing annual 
temperatures, changing weather patterns, and novel ecosystem and agricultural conditions. 
These changes are particularly uncertain and concerning for coastal regions, where sea levels 
are predicted to rise, ocean water will become warmer and more acidic, and the composition of 
sea life used for food and recreation by people could disappear. Even though climate change 
will affect human societies by disrupting not only man-made infrastructure, but also the 
ecosystem services upon which humans rely for their wellbeing and sustenance, adaptation 
analyses often face constraints when aiming to capture the potential impacts to ecosystem 
services as a result of climate change and the economic implications of such changes when 
considering adaptation options. This study aims to address this gap by using ongoing work to 
characterize ecosystem services of coastal-marine ecosystems in Belize, to be able to inform 
the selection of adaptation options and the cost-benefit analyses of such options. Such an 
approach will allow decision-makers in Belize and beyond to consider a broader suite of costs 
and benefits than would have otherwise been available. 
 
Our approach improves upon traditional CBA by including the valuation of ecosystem services, 
addressing variation in the distribution of costs and benefits across an area, and helping to 
identify who and what bear the risk of climate change effects or the benefits of corresponding 
adaptation measures. Our approach also draws upon extensive stakeholder engagement and 
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collaboration with policy makers to ensure the relevance and feasibility of adaptation scenarios. 
This collaborative process proved useful in the coastal zone planning process with CZMAI and 
the Belize Climate and Development Knowledge Network (CDKN) initiative led by WWF. 
 
A natural capital approach to climate adaptation begins with an assessment of current 
provision of ecosystem services. Next, scenarios are developed that account for climate change 
impacts, human activities and development, and alternative adaptation options. Finally, 
ecosystem service models (InVEST) are used to assess the ecosystem service impacts and 
possible costs and benefits of alternative adaptation scenarios, which are then compared in a 
CBA framework (Figure 1). Ideally, these steps are iterated to refine options and outputs, and to 
improve final decisions governing adaptation measures. 
  

Mixed Models/Mixed Messages: Could mental modeling help? 
Steven Gray, University of Massachusetts - Boston 
 
The ecosystem-based fisheries management (EBFM) framework has been a popular paradigm 
for understanding-- and making decisions about—living marine resources (LMR) for almost two 
decades. The rationale for moving away from single species assessments toward more 
comprehensive multi-species and environmentally-based models is clear since these modeling 
frameworks provide scientists and managers a chance to more accurately understand LMR 
dynamics and explicitly consider complex trade-offs between management decisions, 
environmental change, and competing uses of marine systems. As a result, the last decade has 
seen an increase in ecosystem-based and ensemble modeling approaches used to understand 
the complex dynamics of fisheries resources. Although these new modeling approaches are 
considered more representative of complex socio-ecological dynamics, one area of EBFM and 
ensemble modeling that is currently understudied is how to communicate complex, and 
possibly divergent, model results to various fisheries stakeholders who may hold inconsistent 
interests and beliefs (so called mental models) about fishery dynamics. In this talk, I try to 
address some of these issues from a social science perspective by first reviewing what can be 
learned from communicating complex and mixed model results to decision-makers from the 
field of climate change communication. Next, using two recent case studies, I demonstrate how 
different fishery stakeholders make different inferences/decisions based on the same model 
result, because of differences in their beliefs about social or ecosystem dynamics. Finally, I 
demonstrate the use of a fuzzy-logic cognitive mapping software tool, called Mental Modeler 
(www.mentalmodeler.org) that can be used by ecosystem modelers and natural resource 
managers: (1) to provide insight into understanding the different beliefs and decision-making of 
stakeholder groups and (2) to collaboratively model complex fishery systems with stakeholders 
so that assumptions about social-ecological dynamics can be explicitly discussed prior to 
empirical or simulation model building. 
 
Although academic and observational studies related to communicating the results of ensemble 
modeling in fisheries is in its nascency, the fields of climate science and risk communication 
have been engaged with this topic for some time and can provide some insight for fisheries 
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scientists. For example, a recent report from the US Climate Change Science Program (2009) 
entitled Best Practice Approaches for Characterizing, Communicating and Incorporating 
Scientific Uncertainty in Climate Decision-making, led by M. Granger Morgan from Carnegie 
Mellon University, outlines guidelines for climate scientists seeking to communicate mixed-
model results to decision-makers and addresses, among other areas, the cognitive challenges in 
estimating uncertainty and the best way to communicate uncertain model results. Specifically, 
two findings from the report seem to hold particular promise in a fisheries ensemble modeling 
context, namely that (1) the presence of high levels of uncertainty or divergent mixed model 
results may provide stakeholders with an agenda an opportunity to “spin the facts” and (2) 
recipients of information will process any message they receive through previous knowledge 
and of the issue at hand. The report also suggests using a ‘mental model’ approach which 
allows scientists a way to communicate the results of ensemble models by first understanding 
the belief systems of their audiences. 
 
To demonstrate how using a mental model approach might be used in a fisheries context, two 
case studies will be presented using data collected from stakeholders involved in the summer 
flounder fishery in the mid-Atlantic US and from recreational fishery stakeholders in Germany. 
In both case study examples, differences and similarities in the structural and functional 
characteristics of stakeholder mental models were measured using Fuzzy-Logic Cognitive Maps 
(FCM). Specifically, we compared stakeholder groups’ aggregated beliefs, using graph theory 
indices, to quantify differences across groups. In both examples, reliable trends across 
stakeholder groups were found which matched differences in the simulated decisions based on 
these beliefs. Finally, I review the architecture and use of an FCM-based software called Mental 
Modeler which is an analytic tool used to collect and analyze the structure and function of 
beliefs systems of scientists, natural resource managers and other natural resource 
stakeholders in a participatory planning context. 
 

Summary of Invited Speakers Presentations 

Bond 
Nick Bond presented on Lessons EM can learn from seasonal weather prediction.  
 
Current practices in seasonal weather prediction are to use multiple tools - statistical forecast 
tools and dynamical forecast tools. The primary dynamical forecast tool is the National Multi- 
Model Ensemble (NMME). Some others tools available from international sources.  They 
consolidate the tools to make forecast maps with likelihoods of forecasts of temperature, 
precipitation and other meteorological parameters. 
 
For these modeling approaches, sample verification of forecasts is made by different models 
within an ensemble. Some years are easier to forecast than others. Some parameters are easier 
to forecast than others. Some regions of the world are easier to forecast than others. Generally, 
the ensemble prediction is either the best or one of the best in terms of anomaly correlation 
scores. 
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Ensemble modeling approaches in this field are based primarily on averaging methods.  These 
methods include: simple means, means with individual bias corrections, means with collective 
bias corrections, regularization and Bayesian Model Averaging (BMA).  

BMA is a more formal procedure that has proven useful. BMA considers an ensemble of 
plausible models. Models vary in skill; calibration of this skill produces better forecasts. This 
approach works well in short-term weather prediction. About 6 or more models are needed for 
this approach. 

Other points raised were that with long-range forecasts, model variation is greater within 
models than between models, because they often have similar pedigrees, rely on similar 
foundations, and not totally independent. Generally, how reliable models are is based on past 
performance. As a result, there is considerable turnover in top-rated models based on hindcasts 
at global and regional scales. There is almost no chance that one model will be the best in 
consecutive blocks of time. 

In summary, Bond noted the following: 
• No single best method for averaging climate model output exists, though protocols for 

averaging should include evaluation of past performances of different models; 
• Multimodel ensembles represent a key tool for climate forecasts AND increasingly for 

short-term forecasts; 
• On long time horizons, model structure uncertainty dominates sensitivity to initial 

conditions, so using multiple models with different structures is necessary; 
• Output from global climate models (perhaps with statistical downscaling) can 

complement output from vertically integrated numerical, dynamical models. 

Bond also noted that measuring skill in models is harder to do with EMs than climate/weather 
models, because climate models get more data in higher frequency; so climate/weather 
modelers have more data and time steps to work with than ecosystem modelers.  EMs’ “skill” is 
fitting to raw data that has confounding issue with sampling error Ecosystem modelers should 
consider “sampling” forecast skill, and using proxy forecast samples for latent variables 

Beven 
Jack Beven presented on the uses, strengths and weaknesses of numerical models and model 
ensembles in tropical cyclone (TC) forecasting 

 He gave a short description of the type of forecasts that the National Hurricane Center (NHC) 
produces with models.  Forecast parameters made every 6 hr with a focus on the Position and 
intensity, radii of 34 kt, 50 kt, and 64 kt winds for up to 5 days in advance, location of 12-ft seas 
up to 5 days in advance.  He noted that models are NOT used as black boxes; humans always 
have the final say in the forecast, not the models.  Specifically, what NHC forecasts is the 
motion of the storm (the track forecast) and intensity.  

The track forecast is a “relatively” simple problem because storms are steered by larger 
weather systems; like a cork in a stream. Important features are relatively large and easy to 
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measure, and dynamical models forecast track quite well. However, TC intensity is more 
difficult to evaluate as the forecast relies on multiple processes and scales.  It depends on the 
track, wind, temperature, moisture over core and near environment.  It also depends on 
internal processes—eyewall replacement cycles, etc.—that are poorly understood. 

In addition to considering the multiple models available, a forecaster also bases his forecast on 
the previous forecast to provide constraint on the current forecast.  Drastic forecast changes in 
direction (windshield-wipering) and intensity damage credibility of the forecast. Changes in 
forecast are slower than those predicted by models (that’s the human constraint). 

To provide some ideas on how NMFS might move towards more formal use of MMI, Beven 
presented a history of TC forecast models.  The computer that supported original models was 
invented in the 1950s. Early models were statistical. Statistical-dynamical models developed in 
the 1960s for track, in 1990s for intensity. Increased computing power starting in the 1990s 
improved track forecasting skill. Additional incremental improvements were made in the 2000s. 
Error intervals have narrowed over decades. 

In addition to the history, Beven provided an overview of the current model and ensemble 
approaches in use. Those are summarized in Table X.  This table may be useful for thinking 
about LMR model analogs.
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Type Description Examples Utility and other notes 
Statistical  Based on previous storm behavior 

 What “normally occurs” 
 Main Statistical Model:  CLIPER 

(climatology persistence) 
  

-Based on the past, no current knowledge, no 
dynamical data 
-Track, intensity, size and location of storms for a time 
of the year that are moving in a particular direction 
-Can be used to evaluate more complex models (a skill 
baseline) but should NEVER be used as a serious 
forecast by itself 

 Simplified dynamical 
(trajectory) 
 

 Follow cork in stream analogy, where cork 
(hurricane) has no impact on stream 

  

   -Smoothed, simplified; useful when environmental 
flows are simple (e.g., deep tropics) 

 - Need to know which one (deep, medium or shallow) 
is appropriate 

 - Less effective overall than dynamical models 
Dynamical Based on first principles 

Solve fundamental physical laws 
 Most sophisticated 
 Solve fundamental physical equations 

for a wide range of processes 
 3D 
 Global and regional types 
 Several different versions from around 

the world; more in development 

Different models perform well/badly on different days 
but over a year their skills end up more or less 
averaging out and complementing one another 

Dynamic-regional  -Specific for forecasting hurricanes 
 -Higher resolution, more limited coverage close to 

storm area 
 

   -Better  representation of storm means better at 
interactions with environment 

 -Better for intensity forecast than global model 
 -Still a lot of work to do on intensity predictions 

Dynamic-global  -Developed for general weather prediction 
 -Horizontal resolution = 7 to 25 miles (most of the 

time, too large to depict core of hurricane) 
 -Handle large-scale features associated with track 

   -Not good for predicting intensity 
 -Good for predicting size 

Hybrid (Statistical-
Dynamical) 

Combinations of Statistical and Dynamical  Decay-SHIPS (statistical hurricane 
intensity prediction scheme) 

 LGEM (Logistic growth  equation model) 
  -Generally the most skillful for intensity 

forecasting 
 -Predict “average” behavior because 

rapid intensification is relatively rare; 
not capable of forecasting rapid change 

  
  

 

Consensus  Average output from other models with some   - Not models per se; combinations of other models 
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Type Description Examples Utility and other notes 
weighting options  - Can be a simple average 

 - Can be more complicated, where past performance 
is used to correct biases or optimize combinations 
-Consensus models generally outperform individual 
models that make them up 
-The more independent the individual models are, the 
better the consensus does 

Ensemble  A collection of models run with slightly different 
initial conditions or methods of processing, presents 
range of possible outcomes 

 Can be multi-model ensemble or single-model 
ensemble 
 

  

Single-model 
ensemble 

 Global and regional model run many times at 
reduced resolution with perturbed initial conditions 

  

  Current practice is to use ensemble output in a mean 
or average sense due to large number of ensemble 
members (at least 20 for global models) 

Multi-model 
ensemble 

 Model suite that contains several dynamical models, 
less sophisticated models, and consensus models. 

  -Produce range of possibilities 
 -Official forecast is manually created by forecaster 

based on this info 
 -Heavily depends on experience of the forecaster 
 -Forecasts are checked later to measure skill 

Other models 
tangentially related 

-Storm surge models 
-Hazard/catastrophe models 

 Estimates of damage and cost 
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Currently multiple model approaches rely on a forecaster to develop a summary forecast based 
on model outputs. Efforts to develop model ensemble used for probabilistic forecasts and real-
time calculation of uncertainty - GOERSS Prediction of Consensus Error (GPCE, pronounced 
gypsy) – are underway. Within this effort, NHC will run multi-model ensembles, develop 
statistical estimates of the magnitude of the error of the consensus track forecast statistically 
predicted from model spread, develop initial and forecast intensity, forecast latitudinal and 
longitudinal displacements, and then adjust with regression.   

To deal with uncertainty, NHC performs forecast verification, model validation, Monte Carlo 
simulation of wind speeds, and display a track forecast cone – known as the “cone of 
uncertainty”.  
 
NHC verifies ALL official TC track and intensity forecasts because it is mandated, helps reduce 
error, identifies critical issues for research community,  and helps decision makers use info 
more effectively. Typically with verification they find that:   
 

1. track forecast  errors start out low, increase linearly out to day 4 or 5;  
2. intensity forecast errors tend to level off at day 2 or 3 
3. these errors have come down considerably since 1990 
4. But, errors are highly variable from storm to storm even within a given year 

 
Model validation also verifies predictions of all models against the official forecast. Several 
models are top performers that take turns at being best for a year.  The track forecast cone 
represents track forecast errors the center of the storm, that is the storm should be inside the 
cone 67% of the time (which means that it will be outside 33% of the time!). The cone only 
predicts track, not intensity/impact. The radius of circles in cone is a function of time of forward 
projection.  
 
Monte Carlo approach for wind speed probabilities is based on 1000 realistic alternative 
scenarios. It produces probability of winds at different locations and accounts for weakening 
over land. Wind thresholds (probability of hitting 64 kt, 50 kt, etc.) and timing probability are 
computed. 
 
Several general conclusions were presented. Forecasts have improved greatly as quality of 
forecast models and input data have increased. Multi-model ensemble is the preferred 
approach, but there is an increasing use of single-model ensembles. The model verification 
program has helped to drive improvements. No matter how good the models are, there is a 
need for a human forecaster to make the final decision. 
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Leonardi 
Alan Leonardi presented on Ocean Ensemble Modeling.  
 
Leonardi outlined some general principles of ocean modeling, the need for ensemble modeling, 
approaches for ensemble modeling, the use of combining modeling and monitoring to assess 
the impacts of data on forecasts, and he presented a specific example of model ensemble utility 
in the Gulf of Mexico.   
 
Generally, models can identify processes. But they can have error and bias; missed predictions 
are learning experience to help reduce the error and bias of future applications.  With different 
levels of complexity in modeling tradeoffs between variance and bias, one of the goals of 
modeling is to find the sweet spot that minimizes overall error.  Some of the challenges to 
modeling include:  uncertainty in initial conditions, uncertainty in structural assumptions of the 
processes, and nonlinearities and instability in the system.  A good way to deal with these 
challenges is using model ensembles – single model and multiple model ensembles.  
 
One way to create an ensemble is to change initial conditions, and rerun the same model – i.e., 
to use a single model with a variety of configurations.  This can be done to test determinism vs 
non-determinism of the system.  Much of this type of work began in the 1990s when Metzger 
et al ran a four member ocean model ensemble for longer simulations (i.e. longer than the time 
scale of error growth rate – in this case 1979-1996), to examine feature determinism vs non-
determinism. The level of non-determinism could then be used to develop improvements to 
the model and data streams.  
 
Another approach for ensemble modeling is to use multiple diverse models that are trained on 
the same problem. It is best to have multiple ocean forecasts, from separate model types, in 
most cases. Another best practice is to plot model mean and prediction variance around that 
mean, to demonstrate where models diverge. Typically in ocean modeling, there is a learning 
period, over which weights across models are optimized; then the forecast period uses those 
weights that have been established. Generally this will lead to better model performance. 
Ocean modelers use Whole Domain weighting, and 3D weighting, to allow weighting scheme to 
evolve to so as favor the strongest models.  Leonardi noted that fisheries, with only one 
forecast per year, have a disadvantage, and slower learning.  
 
Besides improving models, multiple models can be used to assess the impact of observations on 
forecast and improve monitoring/observations systems. When combined with data 
assimilation, ensembles can be used for Observing System Evaluations (OSE, removing some 
existing data stream), and Observing System Simulation Experiments (OSSE, for new types of 
data you might bring in).  Basically this allows assessment of the value of certain data streams.  
 



 78 

OSSE uses a ‘nature run’, which is the operating model.  Synthetic operations then sample from 
this run.  Then modelers use Forecast Improvement Quantitification to gauge the value of the 
data streams (NOAA AOML).   
 
Leonardi noted that Gulf oil spill modeling needed multiple realizations of hydrodynamic 
models to get a good idea of where BP oil spill headed.  However, stakeholders focused on one 
output of the ensemble and raised concern over one potential but unlikely scenario.  
 
The overall summary of this presentation was that model ensembles are useful, but require a 
lot to produce. Ensembles are useful because they reduce error and allow evaluation of flaws of 
individual models. To produce model ensembles, adequate models, adequate data, and 
adequate diversity in models is necessary.  While ocean models can be readily revised to 
represent a variety of ocean regions, ecosystem models are less transportable. 

 
 

Neuenfeldt 
Neuenfeldt presented on a specific example of MMI developed for EBFM in the Baltic Sea by an 
ICES working group (WKMULTBAL 2012) 
 
Neuenfeldt gave a brief overview of the Sea ecosystem. The biology of the Baltic Sea is driven 
by inflow of salt water to the Baltic; this inflow has declined appreciably since the 1980s. 
Summer water temperatures are highly variable (2-3°C of variability across years). The Baltic 
Sea is a very simple ecosystem with three major fish species: cod, sprat and herring. Cod feeds 
on sprat and juvenile herring, and adult cod feeds upon cod juveniles. Herring feeds on sprat 
and cod eggs. Sprat recruitment responds to temperature; and cod recruitment seems to 
respond to salinity.  
 
In this presentation, Neuenfeldt discussed using Biological Ensemble Modelling Approach 
(BEMA) as a tool to study the impacts of model structure and ensemble averaging on responses 
to climate change and fishing in the Eastern Baltic Sea. This exercise was focused on future cod 
stocks and was designed to answer the following questions: 
-  How variation between models of different complexity influence model results? 
- What are the causes of variation between models (e.g., structure, methodology)? 
-  What is the effect of ensemble weighting and composition? 
-  Are general conclusions across models possible? 
 
Neuenfeldt and colleagues used 7 different models of Eastern Baltic Sea cod: 3 single-species (2 
with age structure and one without), 3 multi-species models (2 with age structure and one 
without), one full food-web model (with age structure for the fished species). In addition, 
hydrographic forcing was also modelled on cod or on interacting species, based on statistical 
models of environmental effect on recruitment and/or biomass.  Scenarios applied to these 
models included 3 fishing mortality scenarios – intense, target or ban and 2 climate scenarios – 
past variation vs further climate change  (+3.5°C SST and -0.8 psu salinity).  
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A large difference in responses between models without stock-recruitment relationship and 
with prey feedbacks on predators and those models with stock-recruitment relationship and 
without feedbacks was noted. The latter are also more sensitive to climate variation, such that 
they magnify underlying climate variation. The conclusions from the ensemble approach as a 
whole, depended on whether and how ensemble selection of subsets and ensemble averaging 
were performed. 
 
Because of the wide range of outcomes. Neuenfeldt and colleagues opted to show the ranges 
of possible responses, and approach synthesis of results across models using decision tables 
(Figure X). 
 
 

 
 
This decision table approach focuses on what can be said across all models. For instance, the 
approach suggests that regardless of model, intense fishing leads to no rebuilding under climate 
change.  

 
 

Arkema 
Katie Arkema presented on the need to collaborate and iterate with stakeholders when 
applying models for EBM.  
 
Arkema presented on a case study of applying multiple modeling approaches and mapping to 
help stakeholders in Belize develop ecosystem management plans. In Belize, the people have a 
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strong intuition of their natural resources needs - fishing, the role of corals and mangroves in 
fisheries and tourism. They also are concerned about infrastructure for tourism, aquaculture, 
dredging for marine transportation. About two decades ago, Belize passed a legendary 
legislation. This legislation identified the need for EBM and about combining expert science and 
local knowledge, and explicitly called for a spatially explicit coastal development plan.  This was 
difficult to implement, because multiple ministries were involved and administration changes 
over time.  Belize had separate regional plans but integrated for the nation 
 
Arkema and a team from The National Capital Project worked on a collaborative project 
between experts and locals to design the new plan for 3 years. The science has largely been 
around applying a suite of models called InVEST (Integrated Valuation of Ecosystem Services) 
that included production functions for how changes in ecosystems lead to changes in benefits 
for people.  
 
In addition to using established tools, Katie Arkema and colleagues developed additional 
socioeconomic tools.  For example, Belize lacked good information on central tourism areas and 
peak tourism periods. Arkema and colleagues developed methods using used geo-coded Flickr 
photos. They tested the method by looking at sites identified to have large tourism interest 
based on Flickr photos and where tourists are going. They mapped areas with high levels of 
tourism and found that Belize City belonged to those areas butlacked tourism infrastructure.  
This enabled incorporation of information on where development might be most beneficial. 
 
Arkema and colleagues developed the suite of models and data and used them interactively 
with an integrated suite of stakeholders. The process was begun by developing a list of 
stressors on the coastal ecosystem - marine transportation, tourism, fishing, development, 
agriculture, dredging, and aquaculture. They also produced lists of all the stakeholders and their 
roles, and objectives for the ecosystem. 
 
Models and the list of stressors were used to help stakeholders to choose possible future 
zoning schemes (high development, conservation and a compromise between conservation and 
development).  By working closely with the stakeholders, Arkema and colleagues were able to 
demonstrate that the compromise scenario (called targeted management) optimized the 
uses/stressors of the system while maintaining the essential features to ensure ecosystem 
productivity. 
 
  
This case study illustrated that transparency is important – clearly outline data sources and 
assumption.  Consolidating information for stakeholders was also important in getting 
agreement on management plans. In addition, they helped Belize develop methods for 
collecting important socioeconomic data and trained Belize people on tools for future use. 
 
Arkema presented on a second case study of planning for resilient coastlines in the US.  
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Coastal communities in the US are at risk from a combination of rising seas and potential 
increases in storm intensity and frequency of storms. There are also costs of hazards to 
infrastructure and business. “Natural defense” (e.g., wetlands) holds promises.   
 
Arkema and colleagues produced maps showing how many people will be at risk of climate 
change if natural habitats are left intact, versus if they are not. They also generated more 
specialized maps showing who will benefit (poor families?, people over 65 years old?, etc.). 
Arkema and colleagues’ study raised awareness about the role of ecosystems and “natural 
defense” in mitigating climate change. They found that simpler models are more helpful when 
diverse decisions need to be taken and that stakeholders have more confidence in those 
simpler models.  

Gray 
Steven Gray presented on the potential of using mental modeling to help with stakeholder 
considerations in EM. 

 
One of the goals of LMR modeling  seems to be to understand and reduce uncertainty on the 
ecological side of the ledger, but there is a lot of uncertainty on the human side of the equation 
too—social contexts, status of communities, interactions among different social sectors. 
Additionally, the social system affects the ecological system. 

Aside from technical issues with ensemble modeling and structural uncertainty, there is also 
communication uncertainty, decision uncertainty, connecting with stakeholder groups. There is 
not a lot of empirical data on how structural uncertainty affects/relates to communication and 
decision uncertainty 

There may be some lessons from climate modeling on how to deal with communication 
uncertainty in ensemble modeling - climate change case studies. Downscaled models have been 
used to assess the social impacts of global processes. These impacts are very hard to estimate 
and assess, but they are very important for decision making.  

In many cases, there is probably more confusion about what is meant by the specific events 
being discussed than about the probabilities attached with them (e.g., US Climate Change 
Science Program 2009). Presence of high levels of uncertainty enables agenda-driven user 
groups to spin facts. There is a risk that recipients interpret what is said to them in terms of 
what they already know; uncertainty allows them to assert their own points and perceptions. 
Empirical study of peoples’ mental models is absolutely essential to properly framing results of 
ensemble models 

The mind forms mental models of reality and uses them to make decisions. These models often 
underlie human behavior.  This is basis by which people make predictions of changes in the 
external world. This has parallels to conceptual models of ecosystems. It actually implies that 
conceptual models should be derived by consensus if they are going to potentially inform how 
we interpret information. Formal models are empirical and statistical, and can be used in 
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ensemble modeling; they are distinct from mental models, which are conceptual and informal 
models 

Fuzzy logic cognitive mapping (FCM) is an approach that may be useful. Fuzzy logic (e.g., Delphi 
method, Bayesian belief networks, expert inference) has been used in some LMR management 
contexts. FCM is superior to these other fuzzy logic techniques because it is semi-quantitative; 
it is not simply a binary system, but more like the way people make choices. 
 
FCM involves quantitatively assigning values to the amount of positive or negative influence 
among model components. Stakeholders define relationships between components, define 
influence of components on one another, and parameterize strong/medium/low and 
positive/negative impacts into numerical values to formalize their mental models. These 
models can then be translated into a matrix and calculate network metrics. Neural networks 
project model behavior and model system state under different scenarios. This produces 
structural network metrics which can be used for scenario analysis. This allows us to model how 
changes in behavior affect changes in decision-making 
 

Discussion Summary 
Within this session on MMI how and where to apply, workshop participants had opportunity to 
ask questions to the  presenters after each presentation as well as two opportunities for group 
discussion of what could be used from the different disciplines for EM. 
 
Important lessons from these presentations were outlined: 

- It is important to have multiple models and beginning moving forward with MMI for EM 
The presentation by Neuenfeldt outlines a potentially good way forward.  
 

- We do not approach model analysis with anywhere near the rigor that climate modelers 
do.  
This is largely due to resource constraints and availability and timing of data and models 
to enable rapid evaluation.  
 

- The trust in human judgment at the forecasting stage would probably be rejected in our 
field. 

 
The discussion focused on the role of the modeler/forecaster in providing forecast/assessment 
advice, transferability of MMI approaches from other disciplines to EM, and stakeholder 
considerations.  
 
There was much discussion on the idea of a hurricane forecaster as the ultimate multi-model 
aggregator and developing summary advice based on the outputs of models and integrating – a 
forecaster in the hot seat. 
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The group generally agreed that the role of the modeling/assessment team was generally 
analogous to forecaster on the hot seat role, but with important distinctions on how 
assessment advice was used and the fact that  LMR is two orders of magnitude slower than 
weather service (annual at best) because of data flows and model time steps.  
 
Ecological modelers actually do have a very strong human dimension component because often 
a single-model ensemble of models is brought to the table for people to decide what is/is not 
plausible as the basis for making recommendations; that’s all part of the small committee 
review process.  BUT, we have a high expectation of external review—for example, assessments 
must be reviewed before they are used—and less of a practice of local experts giving their 
judgments and opinions for use as immediate advice.  The review panel is not exactly the same 
as a forecaster but a forecaster has a time crunch if a hurricane is nearing land there is not time 
for a large committee and several levels of review. Also, forecasters are not making regulatory 
decisions, but rather providing advice for other agencies to make decisions.  Ultimately a 
forecaster’s assessment does not influence the trajectory of a hurricane; however, ecological 
modeler’s assessments can influence the trajectory of a stock.  
 
Because of the analogies of these two roles participants were interested in 1) how forecasters 
transfer that individual knowledge and skill to institutional knowledge 2) how forecasters 
measure their improvement over time.  Beven noted that there is no formal institutionalization 
of knowledge, though the 10 members of the forecasting team talk and share a lot.  NEMoWs 
may be the approach for improving institutional skill among ecosystem modelers. Beven also 
noted that forecasters usually work in junior positions for about 10 years before moving to the 
hot seat.  Individual improvement of forecasters over time is difficult to ascertain, because, as 
they are improving,  models are becoming much better at compiling the terabytes of data; the 
data quality is much better from satellites in particular.  As a forecaster Beven also uses data 
that are independent of the models, and that data inclusion has improved a lot. In addition, 
computational power also helps identify deficiencies in data, model, etc., to a much greater 
extent than it used to. 
 
Participants also steered the discussion to focus on the mechanics of transferring some of these 
approaches for MMI to EM.  Participants were concerned about the number of models needed 
to be used in an ensemble, the level of independence of models, what drives the improvement 
of models, the ability to work with and modify existing models for timely application in an 
ensemble approach, and the process to incorporate new models. 
 
For many of these questions, the answers might vary on a case-by-case basis.  That is, working 
with existing models would require an evaluation of the problem to be addressed and the 
suitability of existing models to address it.  Case studies might help to further outline how to 
modify existing models. 
 
Because Bond and Leonardi addressed the importance of independent models for multi-model 
ensembles, the issue of model independence was addressed. Some participants noted a long-
standing concern about our discipline, namely that we do not have many flavors of models and 
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that they are too interrelated; several that are philosophically similar (e.g., trophic 
interactions). Other experts might argue that something like parasitism, disease, or structural 
habitat is far more important determinant of a population’s status. Others might say spatial 
processes are more important. Ensembles need to expand to include those other types of 
models and not just multiple variants of trophic models. 
 
In other disciplines, when a desire or need to incorporate new models arises, the disciplines 
have fairly specific approaches for testing those models (e.g., running hundreds of simulation 
tests to evaluate model performance). They also require a learning curve on the part of 
users/forecasters.  These testing processes may not be transferable to EM because of data 
issues. 
 
In the other disciplines most of the physics are pretty well explained and understood.  They try 
not to throw in black box parameters because they could throw other processes off kilter that 
lead to consistent error.  An iterative process between data improvements and model 
improvements evolves.  For example, better understanding of role of atmospheric moisture 
from data led to better models and measurement tools that helped incorporate that 
information into weather models. 

 

Though this session was not focused on stakeholder consideration, some initial discussion on 
stakeholders emerged.  The issues were largely centered on risk aversion/conservatism and 
communicating uncertainty   
 
Generally, LMR managers and emergency managers may have different levels of risk aversion. 
Ecosystem modelers wondered to what extent that played a role when forecasters wrote a 
summary forecast. If one model suggests hurricane landfall much sooner than the others, 
forecasters tend to go closer to model average but may also suggest watches and warnings; 
they try to deal with the most likely scenario but are willing to release “but…” statements that 
differ from the guidance of the models.  That is especially true of cases of rapid intensifications. 
This leads to inherent conservatism, which tends to be the case in the LMR context.  This can be 
problematic if the outlier is actually the more accurate predictor.  In this instance, where 
assessments or forecasts are wrong, and a learning opportunity arises. 
 
Within the session on social and management considerations, workshop participants had 
opportunity to ask questions to the presenters after each presentation as well as an 
opportunity for group discussion of what could be used from the different disciplines for EM. 
 
The most salient point from this discussion was a need for transparency. Transparency in model 
assumptions and data is necessary so that stakeholders trust the modelers and the output of 
the models.  Withholding information can result in public backlash. The downside to 
transparency is that presence of high levels of uncertainty enables agenda-driven user groups 
to spin facts.  This presents a risk that recipients interpret what is said to them in terms of what 
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they already know or want to hear. Uncertainty allows them to assert their own points and 
perceptions. 
 
Beyond general stakeholder issues, some users were concerned about how to use multiple 
models and present the output of these models to formal management bodies (e.g., Councils) 
to provide tactical advice. 
 
One approach to building trust with stakeholders and preventing selective acceptance of model 
results is to work collaboratively and interactively with stakeholders during development of 
management objectives, model development, and model applications.  This allows stakeholders 
to understand why a divergent result may have diverged because of model structure or initial 
conditions and may not be truly representative of what is likely to occur in the ecosystem.  
However, this level of interaction may be cost-intensive as it would require a lot of modelers’ 
time. 
 
Much of the group’s interest was focused on the potential to use fuzzy logic cognitive mapping 
(FCM) as a way to develop and apply simple ecosystem models as a part of a suite of models in 
MMI. For MMI in a simulation context, time scale is very important; these appear to be linear 
production models.  The results of the scenarios from FCM are based on steady states; 
however, model iterations can be used to show trajectories of how things in the model change 
through time. 
 
 
 
  



 86 

Appendix A – Agenda 
Day 1 

8:30 -9:00 Plenary 
Welcome, Introduction, Layout plans for NEMoW 3.  Overview and 
Welcome (Jason Link) 

9:00-10:00 Plenary 
Report on current efforts underway or planned at NMFS 
centers/labs/offices (TOR 4). 

9:00  AKFSC 
9:15   NWFSC 
9:30  SWFSC 
9:45   PIFSC 
10:00-10:15 Break Coffee break* 

10:15-11:00 Plenary 
Report on current efforts underway or planned at NMFS 
centers/labs/offices (TOR 4). 

10:15  NEFSC 
10:30   NCBO 
10:45  SEFSC 

11:00 -12:00 Breakout 1 

Outline and review precursor steps (determine the purpose for 
using multiple  model inference in ecosystem assessment and 
outlining the capabilities and limitations of the models to be used 
for inference) (TOR 1) and summarize center efforts (TOR 4) 

12:00-1:00  Lunch break** 
1:00-2:00 Plenary Report out on precursor steps from the breakout groups. 

2:00 - 3:00 Plenary 

Outline and review the mechanics of multiple model inference (TOR 
2). Perspective from atmospheric/climate modeling. Focus on 
model ensembles. Presentation from Invited Speaker (Nick Bond). 

3:00-3:15 Break Coffee break 

3:15 -4:15 Plenary 

Outline and review the mechanics of multiple model inference (TOR 
2).  Perspective from weather/hurricane modeling.  Focus on model 
ensembles. Presentation from invited speaker (John Beven). 

4:15-5:00 Plenary 
Group discussion of how to apply climate and weather approaches 
to living marine resource (LMR) management. 

5:00  Adjourn 
6:30   Seattle Aquarium Event more details from Phil Levin 
 

Day 2 
8:30 -9:00 Plenary Recap previous day. Layout plans for day 2. 

9:00-10:00 Plenary 

Outline and review the mechanics of multiple model inference (TOR 
2). Perspective from oceanic and atmospheric modeling and 
potential applications to marine ecosystems. Focus on model 
ensembles. Presentation from Invited Speaker (Alan Leonardi). 

10:00-10:15 Break Coffee break 

10:15-11:15 Plenary 
Outline and review the mechanics of multiple model inference (TOR 
2).  Perspective from other systems.  Focus on linking models. 
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Presentation from invited speaker (Stefan Neunefeldt). 

11:15 -12:00 Breakout 2 

Outline and review the mechanics of multiple model inference (e.g., 
linking models, model ensembles) (TOR 2).  Capture best practices 
for employing MMI (TOR 5). 

12:00-1:00   Lunch break 

1:00-2:00 Plenary 
Breakout groups report on practices from presenters that can be 
implemented for NMFS LMR management. 

2:00 - 3:00 Plenary 

Management implications and review case studies (TOR 3). Focus 
on policy implications. Presentation from invited speaker (Katie 
Arkema).  

3:00-3:15  Coffee break 

3:15 -4:15 Plenary 

Management implications and review case studies (TOR 3). Focus 
on policy implications. Presentation from invited speaker (Steven 
Gray).  

4:15-5:00 Breakout 3 
Identify practices for incorporating social and policy considerations 
that can be implemented for NMFS LMR management (TOR 3). 

5:00   Adjourn 
 

Day 3 
8:30 -9:00 Plenary Recap previous day. Layout plans for day 3. 

9:00-10:00 Plenary 

Breakout groups report on practices for incorporating social and 
policy considerations that can be implemented for NMFS LMR 
management. (TOR 3) 

10:00-10:15 Break Coffee break 

10:15-11:15 Breakout 4 
Discuss best practices for employing multiple model inference 
(TOR 5). 

11:15 -12:00 Plenary 
Report out on general recommendations for moving forward with 
NMFS Ecosystem Modeling.  

12:00-1:00   Lunch break 
1:00-1:30 Plenary Quick list of future NEMoWs and NEMoW workgroups (TOR 6). 

1:30- 2:30 Breakout 5 

Discuss general recommendations for moving forward with 
multiple model inference in NMFS Ecosystem Modeling in the 
regions (TOR 6). 

2:30-2:45 Break Coffee break 

2:45 -3:45 Plenary 
Report out on general recommendations for moving forward with 
multiple model inference in NMFS Ecosystem Modeling.  

3:45-4:00 Plenary Wrap-up.   
4:00   Adjourn. 
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Appendix D – Breakout Group Questions for TOR and Summary 
Discussion 
 

Session 1 (Day 1  - 11:00-12:00)  TOR 1 & 4 
What are the typical management objectives for your ecosystem models? 
 
How many of your ecosystem models are used operationally, either tactically or strategically (or 
contextually)? 
 
Would any of these applications benefit from multiple model inference (MMI)? 
 
Secondary 
 Approximately how many fishery stock assessments, protected species assessments, habitat 
assessments, aquaculture sitings, and ecosystem assessments are executed at your Center each 
year? 
 
Each of those assessment processes uses a model.  How many ecosystem models (and which 
ones) does your Center use/develop to support these assessment efforts? 
 
  

Session 2 (Day 2  - 11:15-12:00)  TOR 2 & 5 
What are the main methods and tools for executing MMI? 
 
From other disciplines and examples, summarize how MMI have been employed and used. 
 
From plenary speakers and Center experiences, are there specific tools/methods that appear 
most promising? 
 
Secondary 
What are the best methods to explore MMI assumptions and divergence in results? 
 
What are the best methods to combine MMI results? 
 
 

Session 3 (Day 2  - 4:15-5:00) TOR 3 
How would MMI change the way that advice is given, compared to a single model? 
 
What is the appropriate guidance to provide to the LMR assessment scientific review process 
(e.g. SRG or SSC) regarding when to use “single best” model (and output) versus ensemble 
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models (and outputs)? 
 
What are the best methods to communicate MMI assumptions and divergence in results?  
 
Secondary 
 Discuss the policy and sociological considerations when using different models that may have 
divergent results. 
 

Session 4 (Day 3  - 10:15-11:15) TOR 5 
What are the potential benefits and drawbacks to MMI in a living marine resource (LMR) 
context?  Consider the mechanics of MMI and potential management implications. 
 
Is there a set of conditions that would be most amenable to MMI? 
 
From session 2, are there are any best practices for MMI use or adoption that particularly merit 
highlighting? 
 
Secondary 
Do we need to revisit the development of a national ecosystem model toolbox?  
 
What are the pros and cons of developing general operational capacity (NOAA support of 
capacity) versus models built for purpose (funding specific to an issue) 
 
 

Session 5 (Day 3  - 1:30-2:30) TOR 6 
Should we consider employing MMI in a LMR context? 
 
If so, what are the main recommendations for use of MMI in a LMR context? 
 
What are some key topics for future NEMoWs?  And should we alter the format of future 
NEMoWs? 
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Appendix E – Glossary of Frequently Used Abbreviations 
 
AFSC: NMFS Alaska Fisheries Science Center 
BEMA: Biological Ensemble Modeling Approach 
BMA: Bayesian Model Averaging 
BRP: biological reference point 
CWA: Clean Water Act 
CZMA: Coastal Zone Management Act 
EAF: ecosystem approach to fisheries 
EBM: ecosystem-based management 
EM: ecosystem modeling (covering the full range from minimal realistic models, multispecies 
and extended stock assessment models, bulk biomass (network and aggregate) and full system 
(ecosystem and biophysical) models. 
ESA: Endangered Species Act 
IEA: Integrated ecosystem assessment 
LME: large marine ecosystem 
LMRs: living marine resources 
MMI: multiple model inference 
MMPA: Marine Mammal Protection Act 
MS: multi-species 
MSA: Magnuson-Stevens Act 
MSE: management strategy evaluation 
NCBO: NOAA/NMFS/HC/Chesapeake Bay Office 
NEFSC: NMFS Northeast Fisheries Science Center 
NEMoW: National Ecosystem Modeling Workshop 
NEPA: National Environmental Protection Act 
NMFS: National Marine Fisheries Service 
NOAA: National Oceanic and Atmospheric Administration 
NHAW: National Habitat Assessment Workshop 
NSAW: National Stock Assessment Workshop 
NWFSC: NMFS Northwest Fisheries Science Center 
OSEs: Observing System Evaluations; evaluations used in physical oceanography, which involve 
the systematic with-holding of observations from assimilating systems to quantify the 
degradation of the system’s performance when those observations are neglected.  
OSSEs: Operating System Simulation Experiments; modeling experiments that are used in 
physical oceanography to evaluate the impact of new/proposed observing systems on operational 
forecasts. 
PIFSC: NMFS Pacific Islands Fisheries Science Center 
ROMS: Regional Ocean Modeling System 
SEFSC: Southeast Fisheries Science Center 
SWFSC: NMFS Southwest Fisheries Science Center 
TOR: Term of reference 
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