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Abstract 22 

Identifying spatiotemporal hotspots is important for understanding basic ecological  23 

 processes, but is particularly important for species at risk. A number of terrestrial and aquatic 24 

species are indirectly affected by anthropogenic impacts, simply because they tend to be 25 

associated with species that are targeted for removals. Using newly developed statistical models 26 

that allow for the inclusion of time-varying spatial effects, we examine how the co-occurrence of 27 

a targeted and non-targeted species can be modeled as a function of environmental covariates 28 

(temperature, depth) and interannual variability. The non-target species in our case study 29 

(eulachon) is listed under the US Endangered Species Act, and are encountered by fisheries off 30 

the US West Coast that target pink shrimp. Results from our spatiotemporal model indicate that 31 

eulachon bycatch risk decreases with depth and has a convex relationship with sea surface 32 

temperature. Additionally, we found that over the 2007-2012 period, there is support for an 33 

increase in eulachon density from both a fishery dataset (+ 40%) and a fishery independent 34 

dataset (+ 55%). Eulachon bycatch has increased in recent years, but the agreement between 35 

these two datasets implies that increases in bycatch is not due to an increase in incidental 36 

targeting of eulachon by fishing vessels, but because of an increasing population size of 37 

eulachon. Based on our results, the application of spatiotemporal models to species that are of 38 

conservation concern appears promising in identifying the spatial distribution of environmental 39 

and anthropogenic risks to the population.  40 

 41 
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Introduction 45 
 Interest in the spatial modeling of species’ distributions has rapidly increased over the 46 

last 20 years (Guisan and Thuiller 2005, Phillips et al. 2006). Specific questions of interest range 47 

from modeling the occurrence or presence of a species over space (Elith et al. 2006, MacKenzie 48 

et al. 2006), to spatial variation in abundance (Austin 2002), and positive or negative correlations 49 

after explaining environmental drivers (Latimer et al. 2009, Ovaskainen et al. 2010). 50 

Understanding interactions between spatial and temporal variation of a species has implications 51 

for conservation and management, particularly as species face emerging threats, such as climate 52 

change (Walther et al. 2002). Assuming that the environment a population inhabits is 53 

heterogeneous in time or space and failing to consider the interaction (e.g. that the spatial 54 

distribution of good and bad habitat changes over time), is likely to lead to biased estimates of 55 

how that population will respond to disturbances. The statistical methods to disentangle 56 

spatiotemporal effects from environmental variables are complex, but recent computational 57 

advances have made these complex models more accessible to ecologists (Wikle 2003, Ward et 58 

al. 2012, Shelton et al. 2014).  59 

A natural extension of the single-species case is asking how species associations change 60 

over time and space (Veech 2013). Species co-occurrence can be used to estimate interactions 61 

such as competition or predation (Ovaskainen et al. 2010), predict inhabited areas of cryptic 62 

species (Pearson et al. 2007, Thorson et al. 2014), identify attributes that may make species 63 

prone to range shifts as a result of changing climate (Amorim et al. 2014), and predict the effects 64 

of invasive species in new environments (Daehler 2003).  65 

Species’ co-occurrence data can also be used to evaluate human impacts on ecosystems, 66 

for example when human harvest results in simultaneous removal of target and non-target 67 

species. Anthropogenic activity may have predictable impacts on species that are targeted for 68 
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removal, but less predictable impacts on non-target species that co-exist with target species.  69 

Impacts on non-target species often arise when non-target species co-occur with commercially 70 

valuable target species, such as in most fisheries (Pope et al. 2000, Branch et al. 2013), or in the 71 

hunting of game meat (Hofer et al. 1996).  However, non-target species might also be affected 72 

when target species have little commercial value; for example, when the removal of nuisance 73 

species also negatively impacts non-nuisance species (Gribble et al. 1998, Eason et al. 2002). 74 

The unintended effects on non-target species may be of greatest concern when the non-target 75 

species is of conservation concern (Roe et al. 2014). For both target and non-target species, it is 76 

particularly important to understand the effects of environmental variables on distribution and 77 

abundance, as these factors may interact with anthropogenic impacts. Examples may include 78 

interactions between the spatiotemporal distribution of temperature (which may affect a species’ 79 

range) and the distributions of human disturbance (harvest, pollutants).  80 

 To illustrate the spatiotemporal modeling of a target and non-target species, we focus on 81 

interactions between eulachon (Thaleichthys pacificus), a threatened species, and pink shrimp 82 

(Pandalus jordani) from the Northeast Pacific Ocean. Eulachon (also known as 'Pacific smelt' or 83 

'candlefish') are a small, anadromous forage fish, historically commercially valuable, and 84 

culturally important (Senkowsky 2007, Reynolds and Romano 2013). Eulachon serve as a source 85 

of prey for higher trophic level species because individuals contain high lipid content and form 86 

large spawning aggregations (Sigler et al. 2004). Spawning runs of eulachon in Canada and the 87 

USA began to decline from highs in the mid-20th century (Hay and Carter 2000, Gustafson et al. 88 

2010), and were listed as threatened under the US Endangered Species Act (ESA) in 2010. The 89 

two main obstacles to recovery are (1) long term effects of climate on ocean conditions, and (2) 90 
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bycatch, as non-target species in commercial fisheries (National Marine Fisheries Service West 91 

Coast Region 2013).  92 

Here we show how spatiotemporal models can be used to assess the co-occurrence of a 93 

target (pink shrimp) and a non-target species (eulachon) to achieve three management goals 94 

relevant to the threatened species.  First, to estimate and validate the population trend of 95 

eulachon over the past decade, we apply spatiotemporal models to two spatially explicit data sets 96 

- one fishery-independent and one fishery-dependent.  Next, to understand the bycatch risk faced 97 

by eulachon as a non-target species, we combine the spatial estimates of eulachon density with 98 

spatial estimates of pink shrimp density and create time-varying maps of bycatch risk along the 99 

coast. Pink shrimp are commercially important on the US west coast, but the shrimp fishery is 100 

also the main source of eulachon bycatch along the US west coast. Finally, to provide 101 

information that could reduce future bycatch rates, we compare the bycatch risk across years to 102 

ask if there are persistent bycatch hotspots across the time series, and whether environmental 103 

covariates may be used to predict areas of high bycatch risk. Similar spatial models have been 104 

applied to fisheries data (Viana et al. 2013, Pennino et al. 2014, Cosandey-Godin et al. 2015), but 105 

these methods have not been extended to deal with multiple species, or applied to threatened and 106 

endangered species. Combining different spatially explicit datasets, our analyses provide 107 

fisheries managers information on both annual trends of a protected species, as well as specific 108 

spatial areas that may be targeted for future management actions.  109 

 110 

Methods 111 

Data 112 
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 We used two spatial data sets from the west coast of the United States: fishery-dependent 113 

shrimp and eulachon catch data (kg) from the West Coast Groundfish Observer Program 114 

(WCGOP) at the Northwest Fisheries Science Center (NWFSC) (Al-Humaidhi et al. 2012) and 115 

fishery-independent survey data of eulachon from the west coast trawl survey, collected by 116 

NWFSC between 2003 and 2012 (Bradburn et al. 2011). While eulachon are captured by several 117 

fisheries in the Northeast Pacific, we focused our analysis on the pink shrimp trawl fishery off 118 

the northern California, Oregon and Washington coasts, because it is associated with > 99% of 119 

the observed eulachon caught as bycatch (Bellman et al. 2011; Fig. 1; Table 1). The pink shrimp 120 

season spans April-October, and during this period WCGOP observes as much as 20% of pink 121 

shrimp trawls (Bellman et al. 2011). Whether differences exist in the spatial or temporal 122 

distribution of observed and unobserved vessels is unknown, but the observed vessels are 123 

assumed to be representative of all vessels.  We restricted our analysis spatially to the coastal 124 

area where eulachon have been observed (> 41ºN), and temporally to sequential years with 125 

observer coverage, 2007-2012 (the fishery did not include observers in 2006).  126 

 The average latitude and longitude of each shrimp trawl were used to represent the spatial 127 

locations of each sample, and these values were converted to UTM zone 10. In addition to the 128 

spatial locations, we considered two spatially referenced covariates, depth (ftm) and sea surface 129 

temperature (SST) that may help explain the distribution of shrimp and eulachon densities. Both 130 

variables are thought to influence catchability, with depth as a proxy for light, and SST a 131 

function of upwelling (Pearcy 1970, Hannah 2011). The average depth of each trawl (ftm) was 132 

treated as a linear and quadratic predictor, following similar estimated relationships between 133 

depth and groundfish (Shelton et al 2014). As an environmental covariate, we used fine scale 134 

SST anomalies using both linear and quadratic predictors. For each trawl, we collected daily SST 135 
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anomalies on a 0.25º grid, and used bilinear interpolation to create SST values corresponding to 136 

each location in the dataset (http://www.esrl.noaa.gov/psd/, Reynolds et al. 2007). Like other 137 

species distribution models, this framework is easily extended to include other static or time-138 

varying habitat characteristics as predictors. 139 

 Trends in eulachon density inferred from fisheries data alone may be biased for several 140 

reasons: fishing is not random in space or time, but is done preferentially, (2) vessels with 141 

observers on board may behave differently than those without, and (3) the resolution of species 142 

identification may vary slightly from observer to observer (from 2007-2009 before eulachon 143 

were listed under ESA, some observers separated them from other smelt species, while other 144 

observers may not have). We attempted to validate our estimated trends in eulachon density by 145 

fitting similar spatiotemporal models to data from a fisheries independent trawl survey data 146 

collected by NWFSC between 2003 – 2012. This dataset has used the same methodology over 147 

the time series (stratified random sampling design, with the same bottom trawl sampling gear 148 

throughout the time series), and provides an external index of changes in eulachon density 149 

(Bradburn et al. 2011). Over the period 2003-2012, eulachon were encountered in 9% of 3455 150 

research vessel hauls. For spatial consistency between datasets, we only include trawls conducted 151 

north of 41ºN.  152 

 153 

Statistical modeling 154 

We constructed separate models for shrimp and eulachon data to understand the 155 

spatiotemporal patterns of eulachon and shrimp density, as well as how their interactions may 156 

lead to increased eulachon bycatch risk. We adopted this approach of modeling them 157 

independently instead of modeling the ratio of eulachon / shrimp density directly, because it 158 
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allows for the effect of covariates on species distribution to differ between species and allows 159 

separate estimates of shrimp and eulachon temporal trends. For eulachon, either bycatch numbers 160 

or weight could be used as the response variable; we used weight (kg) because it captures 161 

overlap in terms of both numbers and individual size, and thus better represents the spawning 162 

potential for the eulachon population. Because eulachon were absent from a large number of 163 

observed shrimp hauls (38% of 8723), we separately modeled the presence and distribution of 164 

eulachon density, adopting a delta-GLM approach with two sub-models (Pennington 1983, 165 

Maunder and Punt 2004, Thorson and Ward 2013). Probability of occurrence of eulachon in year 166 

t for a set of locations s was modeled using a binomial GLMM with logit link, 167 

logit൫࢖௧ሺܛሻ൯ ൌ X௧ሺܛሻ࢈ ൅  ሻ (1) 168ܛ௧ሺߝ

where ࢖௧ሺܛሻ represents the probabilities of eulachon occurrence at locations s in year t,  X௧ሺܛሻ 169 

represents a matrix of fixed effect covariates at locations s in year t (Depth, Depth2, SST, SST2, 170 

Year), ࢈ represents a vector of coefficients to be estimated, and ߝ௧ሺܛሻ represents a vector of 171 

spatial random effects that follow a first-order autoregressive process: 172 

ߩ൫݈ܽ݉ݎ݋ܰ~ሻܛ௧ሺߝ · ,ሻܛ௧ିଵሺߝ  Σ൯ (2) 173 

where ρ represents the degree of autoregression in encounter probabilities and Σ represents 174 

spatial covariation in random effects (discussed below). Further details regarding the covariance 175 

among locations and years can be found in Thorson et al. (In press). Spatial random effects were 176 

assumed to be autoregressive to account for variation not explicitly included in our model 177 

(variation due to the environment or population processes such as density dependence). To 178 

model the distribution of eulachon density as the second sub-model, we assumed that the log of 179 

eulachon density was normally distributed, and modeled as 180 

 log ሺ࢛௧ሺܛሻሻ ൌ Z௧ሺܛሻࢉ ൅ ሻܛ௧ሺߜ ൅ log ሺܧ௧ሺܛሻሻ (3) 181 
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௧ܻሺܛሻ~Lognormalሺ࢛௧ሺܛሻ,  ሻ  (4) 182ߪ

where Z௧ሺܛሻ is a matrix of covariates corresponding to each haul location (similar to X௧ሺܛሻ), 183 ࢉ 

represents the estimated coefficients, ߜ௧ሺܛሻ represent spatial random effects that again follow an 184 

autoregressive process (similar to eqn 2, but with a unique covariance matrix), ܧ௧ሺܛሻ represents 185 

the duration of hauls as a measure of effort, included as an offset (Thorson and Ward 2013), and 186 

 represents a residual error term for the lognormal distribution.  187 ߪ

For both covariance matrices of the spatial random effects in the presence-absence and 188 

positive models, we used the Matern function to model covariance as a function of Euclidian 189 

distance, Σ௜,௝ ൌ  
ఛమ

୻ሺఔሻଶഌషభ
൫ߢ · ݀௜,௝൯

ఔ
ߢఔ൫ܭ · ݀௜,௝൯, where Σ௜,௝ is the modeled covariance between 190 

locations i and j, ߬ଶ is the estimated spatial variance, Γሺሻ and ܭఔ() represent the gamma and 191 

Bessel functions, respectively, ݀௜,௝ is the Euclidian distance between locations i and j, and ߢ is an 192 

estimated scaling parameter (Lindgren et al. 2011). The parameter ߥ controls the smoothness of 193 

the Matern function and is usually fixed rather than estimated from data (when ߥ ൌ 0.5, the 194 

Matern reduces to the simpler exponential covariance function). Following previous work, we 195 

chose ߥ ൌ 3/2; this allows the Matern to be more flexible than the exponential, but also allows 196 

the function to be differentiable (Rasmussen & Williams 2006). The covariance matrices for the 197 

presence-absence and positive models each have separate parameters ߬ଶ and ߢ, reflecting the 198 

assumptions that each model component may have a different variance or rate at which 199 

correlations decline as a function of distance.  Further details can be found in (Ono et al. 2014, 200 

Thorson et al. 2014).  201 

We applied the same delta-GLM model formulation (eqn. 1-4) to eulachon and pink 202 

shrimp in both the fishery observer data (2007-2012) and to eulachon in the fishery independent 203 

trawl survey (2003-2012). Though our analysis was primarily interested in the dynamics of 204 
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eulachon, fitting these spatiotemporal models to data from the target species (shrimp) allows us 205 

to generate spatial predictions of the distribution of bycatch. Pink shrimp are encountered in the 206 

majority of the shrimp fishery hauls (> 95%, Table 2), but there is wide variation in total density 207 

caught. Like eulachon, we included depth and temperature as quadratic predictors of shrimp 208 

density, year as a fixed effect, and autoregressive spatial random effects. In all, we fit a total of 3 209 

spatiotemporal models, each with a presence-absence and positive-catch component (Table 2): 210 

one delta-GLMM model for eulachon and one  delta-GLMM model for shrimp in the fishery 211 

dataset (spanning 2007-2012); and one delta-GLMM model for eulachon in the fishery 212 

independent dataset (spanning 2003-2012). 213 

Estimation of latent Gaussian Markov random fields has been difficult, and can be 214 

challenging in a Bayesian framework if the dimensionality of the knots or locations is large 215 

(Shelton et al. 2014). Recent advances have allowed the spatial covariance matrix to be 216 

approximated via stochastic partial differential equations (SPDE) as calculated within INLA 217 

(Rue et al. 2009, Ruiz-Cardenas et al. 2012). More specifically, INLA approximates the inverse 218 

of the spatial variance-covariance matrix of fixed locations using three large sparse matrices (see 219 

Thorson et al. In press for more details). Estimation of the fixed effects is then done via 220 

maximum marginal likelihood using the Laplace approximation to approximate the integral 221 

across random effects, and random effects are estimated via Empirical Bayes.  Using these 222 

estimates (and Bayesian priors on fixed effects), INLA allows Monte Carlo samples to be 223 

generated from the posterior distribution, as the Laplace approximation to the marginal 224 

likelihood. Another advantage of the SPDE-INLA approach is that estimation is done entirely in 225 

a predictive modeling framework. Instead of validating model predictions with a test and training 226 

subset, the predictive density of each data point can be found, based on predictions from latent 227 
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random effects. We calculated two models of predictive accuracy: for the presence-absence 228 

model, we calculated the area under the curve (AUC) estimate from the receiving operator 229 

characteristic curve (ROC) using the ROCR package in R (Sing et al. 2005), and for the positive 230 

model, we calculate the proportion of observed values that fell within the 95% credible intervals 231 

of the predictions.    232 

Interpreting results from statistical modelling 233 

After fitting the three delta-GLMM models (to fishery-dependent information regarding 234 

catch rates of shrimp and eulachon, and to fishery-independent data for eulachon, see Table 2), 235 

we then interpret our results in three main ways.  First, to display spatial variation in density for 236 

each species, we generate maps of abundance for shrimp and eulachon.  Second, we used 237 

estimated indices of coastwide abundance to assess whether different data sources are in 238 

agreement regarding trends in catch rate for each data set.  Third, to identify regions of relatively 239 

high or low bycatch risk, we compared fishery-independent estimates of eulachon density with 240 

fishery-dependent estimates of eulachon catches, and generate maps representing bycatch risk for 241 

eulachon.   Each of these analyses is explained in detail below. 242 

 243 

Analysis #1:  Assessing spatiotemporal trends in abundance 244 

 After estimating the models above, we divided our study area (Fig. 1) into 1-km grids. 245 

We used the SST value along with average fishing depth (77 ftm) to project the estimated 246 

eulachon density onto the center of each grid cell. The estimated predicted values at each of the 247 

grid cell centers was calculated given the estimated fixed effects and random effects at the mesh 248 

locations (Latimer et al. 2009; Lindgren et al. 2011), and these values for each of the delta-GLM 249 

sub models was then transformed back to normal space using the appropriate transformation 250 
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(logit-1, log-1). Total density was calculated by multiplying estimated occurrence at each grid 251 

location by the estimated density from the positive model at that location (Shelton et al. 2014). 252 

Total eulachon density for each year was calculated by summing estimates across 1-km grid cells 253 

(the mean and CV across grid cells were also calculated as summary statistics). To include 254 

uncertainty in these estimates, we generated 5000 samples from the approximated posterior 255 

distribution, using the inla.posterior.sample() function. The projection and total density 256 

calculation was repeated for each of these 5000 posterior samples, yielding standard deviations 257 

and credible intervals of density estimates. This procedure was repeated for both the eulachon 258 

and pink shrimp delta-GLM sub-models to create annual indices of both species.  259 

 260 

Analysis #2:  Estimating indices of abundance from each data set 261 

We compared the total eulachon density from the pink shrimp fishery dataset to the total 262 

eulachon density from the fishery independent bottom trawl dataset to examine the concordance 263 

in the annual trends in eulachon density. Because the shrimp fishery and NWFSC trawl survey 264 

datasets have different eulachon catch rates, we standardized them to a similar relative scale, 265 

dividing each density estimate by the estimated density in 2007 (the first year of data from the 266 

pink shrimp fishery). This standardization procedure was replicated for each Monte Carlo sample 267 

from the approximated posterior distribution, so that the estimate in 2007 was always 1.0. To 268 

summarize the average annual trends of our estimates, we fit univariate state-space time series 269 

models to each, using the MARSS package in R (Holmes et al. 2012).   270 

 271 

Analysis #3: Identifying bycatch hotspots and spatial patterns of abundance 272 
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 Following the projection methodology described above, we used the models fit to the 273 

pink shrimp fishery dataset to generate spatial predictions of both eulachon and shrimp density, 274 

as well as the bycatch ratio for each year, 2007-2012. The bycatch ratio at each location was 275 

calculated as the ratio of eulachon to shrimp density; thus, the estimated bycatch ratio at each 276 

location is derived from the estimates of the fishery-dependent eulachon delta-GLMM model and 277 

fishery-dependent shrimp delta-GLMM model. We calculated uncertainty bounds by taking 278 

Monte Carlo samples from the approximated marginal likelihood from each model projection 279 

and calculating the bycatch ratio. Mapping the distribution of bycatch ratios provides a 280 

visualization of bycatch risk in each year. To determine if areas associated with high bycatch risk 281 

were persistent across years, we identified the 1-km grid cells with the largest 10% of the 282 

bycatch ratio in each year and counted the average number of years each grid cell fell in the top 283 

10% of bycatch risk.  284 

Finally, we examined how spatial variability changed through time and how this variation 285 

related to density estimates. The relationship between population size and spatial variability or 286 

patchiness has been widely studied in ecology (Brown 1984, Kareiva 1990, Hanski 1998). For 287 

example, pink shrimp have a strong correlation between population size and area inhabited 288 

(Hannah 1995). For marine fish species, increasing patchiness at low density may also affect 289 

recruitment or species rebuilding times (MacCall 1990). For species of conservation concern, 290 

like eulachon, a relationship between average density and the spatial variability of density would 291 

suggest whether density patchiness changes with overall abundance. Increased patchiness at low 292 

density would suggest a greater potential for fishing mortality to severely deplete local eulachon 293 

populations, suggesting that eulachon populations face increased risk of extinction at low 294 

density. Using eulachon density from the fishery-dependent pink shrimp delta-GLMM, we 295 
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calculated the density for each 1x1km grid cell and coefficient of variation (CV) among grid 296 

cells, for each year between 2007-2012, to look for changes in spatial patchiness with overall 297 

density. 298 

 299 

Results  300 

Analysis #1:  Assessing spatiotemporal trends in abundance 301 

 Spatiotemporal models of eulachon and pink shrimp revealed spatial and temporal 302 

variability in density for both species, as well as bycatch risk. Between 2007 and 2012, average 303 

effort in the pink shrimp fishery showed strong spatial patterning (Fig. 1). Shrimp and eulachon 304 

density also showed strong variation in spatial distribution patterns but visual inspection shows 305 

that areas of high density do not coincide between the species (Fig. 1). We found that both 306 

shrimp and eulachon density were affected by environmental variables. Consistent with previous 307 

modeling (Hannah 2014), eulachon occurrence and density decreased monotonically with depth. 308 

The effect of depth was strongest for the occupancy model, which is expected given that 309 

eulachon is a nearshore species (Fig. 2). The effect of depth on shrimp density was weaker, but 310 

the quadratic effect indicated highest density at intermediate depths (~ 95 m, Fig. 2). The effect 311 

of sea surface temperature was strongest for eulachon, with lowest occurrence and density 312 

occurring at intermediate SST anomalies (~ -1, Fig. 2). Warmer SST anomalies corresponded to 313 

slightly higher shrimp occurrence, and total shrimp density was also found to have a convex 314 

relationship with SST (Fig. 2).  From the estimated covariate effects predicting shrimp and 315 

eulachon density, we can also examine how these variables affect derived bycatch risk. 316 

Specifically, bycatch decreased with haul depth (Fig. 2). The effect of SST was convex on both 317 
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the presence-absence and positive eulachon models (Fig. 2), suggesting lowest bycatch rates at 318 

temperatures near average (ݑௌௌ் ൌ െ1), but higher bycatch rates at lower and higher anomalies.  319 

 320 

Analysis #2:  Estimating indices of abundance from each data set 321 

 Despite the strong spatial patterning, the average maps of eulachon density obscured a 322 

more general trend in abundance across years. Overall density estimates from the shrimp fishery 323 

and the independent trawl survey showed an increasing temporal trend in eulachon (Fig. 3). The 324 

exponential growth rate of estimated eulachon density since 2007 has increased by 39.7% (95% 325 

CIs = 26.1-54.5%) annually based on the shrimp fishery data and by 56.1% annually (95% CIs = 326 

22.8-85.9%) based on the trawl survey. Despite the different methodology and gear used in each 327 

dataset, the 10 year window provided by the fishery-independent research survey suggests that 328 

the eulachon density was substantially higher in 2012 than in any recent period (Fig. 3).  We lack 329 

data to compare current density estimates to eulachon density in historical times. 330 

 331 

Analysis #3: Identifying bycatch hotspots and spatial patterns of abundance 332 

Output from the eulachon and shrimp models applied to the shrimp fishery data were 333 

combined to generate year specific maps of eulachon bycatch risk (Fig. 4). These maps suggest 334 

bycatch risk increasing in recent years. Examining projected bycatch rates over time, our 335 

spatiotemporal model suggests several areas that have higher or lower bycatch rates, on average, 336 

after accounting for environmental covariates and year-to-year variation (Figs. 2-3). Examining 337 

areas associated with the top 10% risk in each year indicates that these high risk areas are 338 

primarily in coastal areas and generally consistent across time: three examples include the area 339 

just south of Coos Bay (Oregon: CB in Fig. 5), the area south of Greys Harbor (Washington: GH 340 



  16

in Fig. 5) north of the Columbia River, and the area just south of La Push (not shown) in the 341 

middle of the Washington coast (Fig. 5). Areas further offshore appear to have lower estimated 342 

bycatch rates, which is not surprising given that eulachon are a coastal pelagic species. While 343 

some hotspots appear to be consistent over time, there is also considerable variation across years; 344 

bycatch risk in 2012 is notably different from previous years, for example. We do not have an 345 

explanation for the radically different patterns of bycatch risk in 2012 but note it occurred in a 346 

year of unusually high eulachon abundance (Fig. 3). 347 

Finally, we summarized the relationship between the spatial variation and mean density 348 

of eulachon across the study area. Overall, there is a notable negative relationship between total 349 

eulachon abundance and the spatial variability in eulachon density (Fig. 6). This indicates that 350 

eulachon density has become less patchy over the course of the time-series. Together, these 351 

results suggest a potential for density-dependent distribution of eulachon density that should 352 

strongly inform potential management actions for this threatened species. 353 

 354 

Discussion 355 

 The importance of spatiotemporal variability in population processes has long been 356 

recognized in ecology. Until recently, fitting these models to data has been computationally 357 

prohibitive because of their complexity, with hundreds or thousands of spatial random effects 358 

being potentially estimated. Instead, ecologists have tended to focus on the singular effects of 359 

space or time, while ignoring potential interactions. Understanding how the distribution of a 360 

population (and the spatial variation) changes over time is critical for commercially valuable 361 

species targeted for harvest and species of conservation concern (Viana et al. 2013, Thorson et 362 

al. 2014). We show how spatiotemporal models can be used to develop approximate Bayesian 363 
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estimates and inform multiple management aspects of two interacting marine species (targeted 364 

pink-shrimp and non-targeted eulachon).  365 

 In the Northeast Pacific Ocean, eulachon are known to co-occur with a range of other fish 366 

species, such as pollock and herring, as well as invertebrates, such as krill (Wilson 2009). 367 

Understanding the interactions in space and time with pink shrimp is particularly important for 368 

fisheries management, where the goal is to minimize eulachon bycatch while achieving pink 369 

shrimp landings near maximum sustainable yield. Spatiotemporal models, such as those used in 370 

our analysis, may be useful in identifying separation in the spatial, temporal, or depth 371 

distributions of these species. We found strong support for differences in the occurrence of these 372 

species at different depths, which is somewhat expected given their life histories (eulachon tend 373 

to be more pelagic feeding on plankton near the surface, and adult shrimp tend to occupy sandy 374 

or muddy ocean bottoms). Similarly, our models also found support for consistent hotspots of 375 

eulachon in areas off the Oregon and Washington coast, which may represent pre-spawning 376 

aggregations 377 

In our examination of the spatiotemporal distribution of eulachon incidentally caught by 378 

the pink shrimp fishery off the US west coast, we demonstrated three advantages of this 379 

modeling approach. First, these methods may be used to assess overall trends in abundance, 380 

similar to simpler population viability (PVA) style approaches. Estimates derived from the 381 

spatiotemporal model are more robust than estimates that ignore spatial variation (Dormann 382 

2007; Thorson et al. 2014). For eulachon, the positive trends in estimated density over 2007-383 

2012 (Fig. 3) provides an optimistic outlook for eulachon recovery. Because this trend was found 384 

in the dataset from the fishery and the independent research dataset, it is more likely that 385 

increasing eulachon bycatch is attributable to an increasing eulachon population, rather than 386 
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increasing bycatch rates. The differences between the two trend estimates may be partially 387 

explained by shrimp fishing vessels becoming more efficient at avoiding eulachon over this 388 

period (Hannah and Jones 2007, 2012), which would cause the trend in eulachon density 389 

estimated from fishery data to be underestimated. Though not included in our analysis, increases 390 

of similar magnitude to those found in our study have also been found in marine surveys in 391 

Canadian waters encountering more northern populations of eulachon (Schweigert et al. 2012). 392 

Another hypothesis for increased eulachon bycatch is that shrimp density has declined, however 393 

this decline is not supported by the data (Fig. 3).  394 

 A second result of the spatiotemporal modeling approach is that by combining species 395 

abundance with covariates that are also changing in space and time, the effect of these covariates 396 

on occurrence or abundance can be estimated, and maps of species distributions can be 397 

generated. For eulachon, we found that the depths of each shrimp haul were negatively correlated 398 

with occurrence and total density (Fig. 2). We also found a convex relationship of ocean 399 

temperature on eulachon occurrence and density, suggesting that larger eulachon density may be 400 

found at extreme temperatures (Fig. 2). Variables like ocean temperature, which vary at wide 401 

spatial scales, can be useful in producing spatial maps of abundance or bycatch risk (Fig. 4). 402 

Though our projections are temporally coarse on an annual time step, similar projections could 403 

be made on weekly, or even daily time steps. For some marine species, fisheries managers have 404 

instituted mobile closures in time and space (Grantham et al. 2008, Haflinger and Gruver 2009), 405 

and fine scale spatiotemporal projections may be useful in informing in-season fisheries closures.  406 

 The third output from our case study is that we can ask whether areas associated with 407 

high bycatch risk are consistent over time. For eulachon encountered in the shrimp fishery, we 408 

found at least three areas that appear to be consistent hotspots of eulachon bycatch across years 409 
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(Fig. 5). For some relatively sessile species, such as rockfish species, managers have designated 410 

protected areas that are static across time (Dalton and Ralston 2003). Though the mechanism for 411 

higher eulachon bycatch rates in these areas across years is unclear, our general approach may be 412 

useful in identifying candidate areas for future fishery restrictions or closures.  413 

 A number of approaches have been successfully implemented to minimize impacts on 414 

protected marine species, such as eulachon. In addition to fishing closures, other successful 415 

approaches include modification to fishing gear (Hannah et al. 2011). Spatiotemporal statistical 416 

models, similar to the approach used in this paper, are yet another tool for management that can 417 

also be used to identify ways to minimize risk, both temporally and spatially (see also: Jannot & 418 

Holland 2013). Because of recent advances in software tools, such as INLA, there are few 419 

computational hurdles involved in fitting these complex spatiotemporal models, and the only 420 

limit to application of these methods is the availability of spatially referenced data. Many trawl 421 

survey datasets in the USA, such as the one included in our analysis, have been made publicly 422 

available only recently, but we expect similar data to become available from other ecosystems 423 

around the world.  424 

 425 

Acknowledgements 426 

 NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, 427 

Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. Observer data provided by 428 

the Fisheries Observation Science program, and the fisheries independent trawl survey data 429 

provided by the Population Ecology program (NWFSC, NOAA). Additional assistance with 430 

interpretation was provided by staff from both programs. J. Thorson thanks K. Kristensen, H. 431 

Skaug, and S. Munch for ongoing input regarding interpretation of Gaussian random field 432 



  20

modelling.  B. Hannah (ODFW), R. Gustafson, M. McClure, and three anonymous reviewers 433 

provided additional feedback that improved the quality of this manuscript.   434 



  21

Literature Cited 435 
 436 
Al-Humaidhi, A.W., M.A. Bellman, J. Jannot, and J. Majewski. 2012. Observed and estimated 437 

total bycatch of green sturgeon and Pacific eulachon in 2002-2010 U.S. west coast 438 

fisheries. West Coast Groundfish Observer Program. National Marine Fisheries Service, 439 

NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112. 440 

Amorim, F., S. B. Carvalho, J. Honrado, and H. Rebelo. 2014. Designing Optimized Multi-441 

Species Monitoring Networks to Detect Range Shifts Driven by Climate Change: A Case 442 

Study with Bats in the North of Portugal. PLoS ONE 9. 443 

Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological 444 

theory and statistical modelling. Ecological Modelling 157:101-118. 445 

Bradburn, M. J., A. Keller, and B. H. Horness. 2011. The 2003 to 2008 U.S. West Coast bottom 446 

trawl surveys of groundfish resources off Washington, Oregon, and California: Estimates 447 

of distribution, abundance, length, and age composition. U.S. Dept. of Commerce, 448 

NOAA Tech. Memo., NMFS-NWFSC-114, 323 p. 449 

Branch, T. A., A. S. Lobo, and S. W. Purce. 2013. Opportunistic exploitation: an overlooked 450 

pathway to extinction. Trends in Ecology & Evolution 28:409-413. 451 

Brown, J. H. 1984. On the Relationship between Abundance and Distribution of Species. 452 

American Naturalist 124:255-279. 453 

Cosandey-Godin, A., E.T. Krainski, B. Worm, and J.M. Flemming. 2014. Applying Bayesian  454 

spatiotemporal models to fisheries bycatch in the Canadian Arctic. Canadian Journal of 455 

Fisheries and Aquatic Sciences, 72: 186-197.  456 

Daehler, C. C. 2003. Performance comparisons of co-occurring native and alien invasive plants:  457 

 458 



  22

Implications for conservation and restoration. Annual Review of Ecology Evolution and 459 

Systematics 34:183-211. 460 

Dalton, M. G. and S. Ralston. 2003. The California rockfish conservation area and groundfish 461 

trawlers at Moss Landing harbor. Marine Resource Economics 18:67-83. 462 

Dormann, C.F. 2007. Effects of incorporating spatial autocorrelation into the analysis of species  463 

distribution data. Global Ecology and Biogeography 16:129-138. 464 

Eason, C. T., E. C. Murphy, G. R. G. Wright, and E. B. Spurr. 2002. Assessment of risks of 465 

brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11:35-48. 466 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. 467 

Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. 468 

Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. 469 

Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. 470 

S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of species' 471 

distributions from occurrence data. Ecography 29:129-151. 472 

Grantham, H. S., S. L. Peterson, and H. P. Possingham. 2008. Reducing bycatch in the South 473 

African pelagic longline fishery: the utility of different approaches to fisheries closures. 474 

Endangered Species Research 5:291-299. 475 

Gribble, N. A., G. McPherson, and B. Lane. 1998. Effect of the Queensland Shark Control 476 

Program on non-target species: whale, dugong, turtle and dolphin: a review. Marine and 477 

Freshwater Research 49:645-651. 478 

Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple 479 

habitat models. Ecology Letters 8:993-1009. 480 



  23

Gustafson, R. G., M. J. Ford, D. Teel, and J. S. Drake. 2010. Status review of eulachon 481 

(Thaleichthys pacificus) in Washington, Oregon, and California.in p. U.S. Deptartment of 482 

Commerce NOAA Tech. Memo. NMFS-NWFSC-105, editor. 483 

Haflinger, K. and J. Gruver. 2009. Rolling hot spot closure areas in the Bering Sea walleye 484 

pollock fishery: estimated reduction of salmon bycatch during the 2006 season.in A. F. 485 

Society, editor. American Fisheries Society. 486 

Hannah, R. W. 1995. Variation in Geographic Stock Area, Catchability, and Natural Mortality of 487 

Ocean Shrimp (Pandalus-Jordani) - Some New Evidence for a Trophic Interaction with 488 

Pacific Hake (Merluccius-Productus). Canadian Journal of Fisheries and Aquatic 489 

Sciences 52:1018-1029. 490 

Hannah, R. W. 2011. Variation in the distribution of ocean shrimp (Pandalus jordani) recruits: 491 

links with coastal upwelling and climate change. Fisheries Oceanography 20:305-313. 492 

Hannah, R. W. 2014. Evaluating the population-level impact of the ocean shrimp (Pandalus 493 

jordani) trawl fishery on the southern distinct population segment of eulachon 494 

(Thaleichthys pacificus).  Oregon Dept. Fish Wildl., Information Rept. Ser., Fish. No. 495 

2014-06.  20 p. 496 

Hannah, R. W. and S. A. Jones. 2007. Effectiveness of bycatch reduction devices (BRDs) in the 497 

ocean shrimp (Pandalus jordani) trawl fishery. Fisheries Research 85:217-225. 498 

Hannah, R. W. and S. A. Jones. 2012. Evaluating the behavioral impairment of escaping fish can 499 

help measure the effectiveness of bycatch reduction devices. Fisheries Research 131:39-500 

44. 501 



  24

Hannah, R. W., S. A. Jones, M. J. M. Lomeli, and W. W. Wakefield. 2011. Trawl net 502 

modifications to reduce the bycatch of eulachon (Thaleichthys pacificus) in the ocean 503 

shrimp (Pandalus jordani) fishery. Fisheries Research 110:277-282. 504 

Hanski, I. 1998. Metapopulation dynamics. Nature 396:41-49. 505 

Hay, D. and P. B. Carter. 2000. Status of the eulachon Thaleichthys pacificus in Canada, 506 

Research Document 2000/145.in F. a. O. Canada, editor., Pacific Biological Research 507 

Station, Nanaimo, BC. 508 

Hofer, H., K. L. I. Campbell, M. L. East, and S. A. Huish. 1996. The impact of game meat 509 

hunting on target and non-target species in the Serengeti. Pages 117-176 in V. J. Taylor 510 

and N. Dunstone, editors. The Exploitation of Mammal Populations. Springer 511 

Netherlands. 512 

Holmes, E.E., E.J. Ward, and K. Wills. 2012. MARSS: Multivariate autoregressive state-space 513 

models for analyzing time-series data. The R Journal 4: 11-19. 514 

Jannot, J.E. and D. S. Holland. 2013. Identifying ecological and fishing drivers of bycatch in a 515 

U.S. groundfish fishery. Ecological Applications 27: 1645-1658. 516 

Kareiva, P. 1990. Population-Dynamics in Spatially Complex Environments - Theory and Data. 517 

Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 518 

330:175-190. 519 

Latimer, A. M., S. Banerjee, H. Sang, E. S. Mosher, and J. A. Silander. 2009. Hierarchical 520 

models facilitate spatial analysis of large data sets: a case study on invasive plant species 521 

in the northeastern United States. Ecology Letters 12:144-154. 522 



  25

Lindgren, F., H. Rue, and J. Lindstrom. 2011. An explicit link between Gaussian fields and 523 

Gaussian Markov random fields: the stochastic partial differential equation approach. 524 

Journal of the Royal Statistical Society Series B-Statistical Methodology 73:423-498. 525 

MacCall, A. D. 1990. Dynamic geography of marine fish populations. Washington State Sea 526 

Grant, Seattle, Washington. 527 

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. 528 

Occupancy estimation and modeling: inferring patterns and dynamics of species 529 

occurrence. Elsevier, Burlington, MA. 530 

Maunder, M. N. and A. E. Punt. 2004. Standardizing catch and effort data: a review of recent 531 

approaches. Fisheries Research 70:141-159. 532 

National Marine Fisheries Service West Coast Region. 2013. Federal Recovery Outline, 533 

Eulachon Southern DPS. NOAA Fisheries, Seattle, WA. 534 

Ono, K., A. O. Shelton, E. J. Ward, J. T. Thorson, B. E. Feist, and R. Hilborn. 2014. How do 535 

populations respond to fishing? A spatio-temporal investigation of marine species 536 

seasonal dynamics. Ecological Applications In press. 537 

Ovaskainen, O., J. Hottola, and J. Siitonen. 2010. Modeling species co-occurrence by 538 

multivariate logistic regression generates new hypotheses on fungal interactions. Ecology 539 

91:2514-2521. 540 

Pearcy, W. G. 1970. Vertical migration of the ocean shrimp Pandalus jordani: a feeding and 541 

dispersal mechanism. California Fish and Game 56(2):125-129. 542 

Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting species 543 

distributions from small numbers of occurrence records: a test case using cryptic geckos 544 

in Madagascar. Journal of Biogeography 34:102-117. 545 



  26

Pennington, M. 1983. Efficient Estimators of Abundance, for Fish and Plankton Surveys. 546 

Biometrics 39:281-286. 547 

Pennino, M. G., F. Muñoz, D. Conesa, A. López-Quílez, and J. M. Bellido. 2014. Bayesian 548 

spatio-temporal discard model in a demersal trawl fishery. Journal of Sea Research 549 

90:44-53. 550 

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species 551 

geographic distributions. Ecological Modelling 190:231-259. 552 

Pope, J. G., D. S. MacDonald, N. Daan, J. D. Reynolds, and S. Jennings. 2000. Gauging the 553 

impact of fishing mortality on non-target species. Ices Journal of Marine Science 57:689-554 

696. 555 

Rasmussen, C. E. and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT  556 

Press, Cambridge, MA.  557 

Reynolds, N. D. and M. D. Romano. 2013. Traditional ecological knowledge: reconstructing 558 

historical run timing and spawning distribution of eulachon through tribal oral history. 559 

Journal of Northwest Anthropology 47:47-70. 560 

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax. 2007. 561 

Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 562 

20:5473-5496. 563 

Roe, J. H., S. J. Morreale, F. V. Paladino, G. L. Shillinger, S. R. Benson, S. A. Eckert, H. Bailey, 564 

P. S. Tomillo, S. J. Bograd, T. Eguchi, P. H. Dutton, J. A. Seminoff, B. A. Block, and J. 565 

R. Spotila. 2014. Predicting bycatch hotspots for endangered leatherback turtles on 566 

longlines in the Pacific Ocean. Proceedings of the Royal Society B-Biological Sciences 567 

281. 568 



  27

Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian inference for latent Gaussian 569 

models by using integrated nested Laplace approximations. Journal of the Royal 570 

Statistical Society Series B-Statistical Methodology 71:319-392. 571 

Ruiz-Cardenas, R., E. T. Krainski, and H. Rue. 2012. Direct fitting of dynamic models using 572 

integrated nested Laplace approximations - INLA. Computational Statistics & Data 573 

Analysis 56:1808-1828. 574 

Schweigert, J., C. Wood, D. Hay, M. McAllister, J. Boldt, B. McCarter, T. W. Therriault, and H. 575 

Brekke. 2012. Recovery potential assessment of eulachon (Thaleichthys pacificus) in 576 

Canada.in P. B. S. Fisheries and Oceans Canada, editor., Nanaimo. 577 

Senkowsky, S. 2007. A Feast to Commemorate—and Mourn—the Eulachon. BioScience 57:720. 578 

Shelton, A. O., J. T. Thorson, E. J. Ward, and B. E. Feist. 2014. Spatial, semi-parametric models 579 

improve estimates of species abundance and distribution. Canadian Journal of Fisheries 580 

and Aquatic Sciences 71:1655-1666. 581 

Sigler, M. F., J. N. Womble, and J. J. Vollenweider. 2004. Availability to Steller sea lions 582 

(Eumetopias jubatus) of a seasonal prey resource: a prespawning aggregation of eulachon 583 

(Thaleichthys pacificus). Canadian Journal of Fisheries and Aquatic Sciences 61:1475-584 

1484. 585 

Sing, T., O. Sander, N. Beerenwinkel, and Lengauer, T. 2005. ROCR: visualizing classifier 586 

performance in R. Bioinformatics 21:3940-3941 587 

Thorson, J. T., H. Skaug, K. Kristensen, A. O. Shelton, E. J. Ward, J. Harms, and J. Benante. 588 

2014. The importance of spatial models for estimating the strength of density 589 

dependence. Ecology In press. 590 



  28

Thorson, J. T. and E. J. Ward. 2013. Accounting for space-time interactions in index 591 

standardization models. Fisheries Research 147:426-433. 592 

Veech, J. A. 2013. A probabilistic model for analysing species co-occurrence. Global Ecology 593 

and Biogeography 22:252-260. 594 

Viana, M., A. L. Jackson, N. Graham, and A. C. Parnell. 2013. Disentangling spatio‐temporal 595 

processes in a hierarchical system: a case study in fisheries discards. Ecography 36:569-596 

578. 597 

Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, 598 

O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate 599 

change. Nature 416:389-395. 600 

Ward, E.J., G.R. Pess, K. Anlauf-Dunn, and C.E. Jordan. 2012. Applying time series models 601 

with spatial correlation to identify the scale of variation in habitat metrics related to 602 

threatened coho salmon (Oncorhynchus kisutch) in the Pacific 603 

Northwest. Canadian Journal of Fisheries and Aquatic Sciences, 69:1773-1782. 604 

Wikle, C. K. 2003. Hierarchical Bayesian models for predicting the spread of ecological 605 

processes. Ecology 84:1382-1394. 606 

Wilson, M.T. 2009. Ecology of small neritic fishes in the western Gulf of Alaska. I. Geographic 607 

distribution in relation to prey density and the physical environment. Marine Ecology 608 

Progress Series, 392:223-237. 609 

  610 



  29

Description of Ecological Archives material 611 

Included for the supplement are  612 

1. A dataset for eulachon from the NOAA trawl survey, 2003-2012. Data are spatially 613 

referenced, and labeled with corresponding date. Response is the biomass encountered.  614 

2. R code for fitting a spatiotemporal model to the eulachon trawl survey (fishery 615 

independent dataset) 616 

 617 
  618 
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Table 1. Summary of observed effort, shrimp catches, and eulachon bycatch, 2007-2012 in 619 

trawls targeting pink shrimp.  620 

Summary 2007 2008 2009 2010 2011 2012 

Eulachon wt (kg) 199.204 348.23 364.95 1585.10 2965.47 4349.36 

Eulachon occurrence (%) 0.07 0.24 0.28 0.65 0.70 0.90 

Shrimp wt (kg) 1302.87 1249.73 1133.21 1851.44 4050.77 3655.25 

Effort (haul hrs) 1649 1424.05 949.74 2091.29 3858.79 4249.3 

 621 

  622 
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Table 2. Summary of datasets and model diagnostics used in our analysis. Included are the 623 

species, data source (‘Survey’ = fisheries independent), time span, sample size (n = no. of hauls), 624 

and for each a diagnostic measure of fit. For the presence-absence sub-model, we include the 625 

area under the curve (AUC) from the receiver characteristic operating curve (ROC), where 626 

values closer to 1.0 indicates better predictive abilities. For the positive model, we include the 627 

proportion of observed data that fall within the 95% predicted credible intervals from the 628 

spatiotemporal model.  629 

Model Species Data source Years n Response AUC 95% coverage

1 Eulachon Fisheries 2007-2012 9107 Presence 0.662  

 Eulachon Fisheries 2007-2012 5524 Positive  0.982 

2 Pink shrimp Fisheries 2007-2012 9107 Presence 0.514  

 Pink shrimp Fisheries 2007-2012 8723 Positive  0.979 

3 Eulachon Survey 2003-2012 3181 Presence 0.894  

 Eulachon Survey 2003-2012 294 Positive  0.976 

   630 
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Figure Legend 631 

Figure 1. Spatial distribution of observed effort (measured as total haul duration in hours), 632 

shrimp catch per unit effort (kg / haul hours), and eulachon bycatch per unit effort (kg / haul 633 

hours), aggregated over 2007-2012. For scaling purposes, effort and catch per unit effort are 634 

shown in log space.  635 

 636 

Figure 2. Marginal posterior effects for the relationships between depth and sea surface 637 

temperature (SST). Effects are shown separately for the presence/absence of eulachon, total 638 

eulachon and shrimp density, and as the derived bycatch risk of eulachon:shrimp density. To 639 

show the marginal effects, all covariates not of interest are held at the mean (77 ftm depth, SST 640 

anomaly = -1). The relationship is shown across the entire observed scale, and the rug plot (i.e., 641 

ticks at the bottom of each plot) indicates the distribution of data.  642 

 643 

Figure 3. Estimated density indices of eulachon from the Northwest Fisheries Science Center 644 

trawl survey, 2003-2012, and from the pink shrimp fishery observer data, 2007-2012. Indices are 645 

scaled to 2007 values (estimated posterior medians are presented, with +/- 1 sd). Also shown are 646 

estimates of shrimp density +/- 1 sd (scaled by a factor of 10 to make estimates visible). 647 

 648 

Figure 4. Estimated bycatch risk, projected from the posterior predictive distribution on a 1km 649 

grid. Bycatch risk is calculated as estimated eulachon density / shrimp density. Orange / red 650 

areas represent relative hot spots of eulachon bycatch; blue areas represent areas of low risk. All 651 

years are shown on the same scale to show the increasing trend in eulachon/shrimp density.  652 

 653 
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Figure 5. Estimated areas of highest bycatch risk, projected from the posterior predictive 654 

distribution on a 1km grid. For any year, bycatch risk is defined as the top 10% of values (shown 655 

in red); to show consistent areas across time, averages are calculated over all years.  North to 656 

south: GH= Grey's Harbor, WA, NP=Newport, OR, CB= Coos Bay, OR, EU=Eureka, CA. 657 

 658 

Figure 6. Estimated mean eulachon density (kg/km2) and CV, 2007-2012. The 95% CIs are 659 

shown around the estimates of each summary statistic as solid lines.  660 

  661 
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