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Abstract 

The variability of Atlantic blue marlin habitats and spatial dynamics was studied through 
the combined use of a state of the art ecosystem model (SEAPODYM) and movement data from 
electronic satellite tags.   We compiled and analyzed 120 Popup Archival Transmitting (PAT) 
tags deployed on Atlantic blue marlin from 2002 to 2008 in the Atlantic and the Gulf of Mexico.  
A preliminary model was parameterized using assimilation of depth, temperature and movement 
tracks from PAT data and general knowledge on tuna and billfishes.   The model was used to 
estimate the habitat index of the blue marlin.  In general, the seasonal patterns of blue marlin 
habitat from model matched well with the observed data. To test the performance of the model 
on feeding habitat, we conducted sensitivity analysis by changing the optimal feeding 
temperatures and the DO threshold levels, and for spawning habitat by changing the optimal 
surface temperature for juvenile.  Habitat indices were analyzed by calculated the area in square 
kilometer at two levels (0.1 and 0.5).   Feeding habitat area decreased as the optimal feeding 
temperature and DO threshold increased, and the high quality habitat (>0.5) decreased faster than 
the lower quality habitat (>0.1).  Similarly, the spawning habitat area also decreased as the 
optimal surface temperature for juvenile increased.  However these limited tagging data are not 
informative enough to correctly estimate the movement patterns at the scale of population.   
Further researches are necessary to continue this work and to move on to the next step of model 
parameterization, especially the use of fishing data (effort, catch and size) to evaluate the habitat 
modeling and to improve parameterization of population movements and migrations. 
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Introduction 

Blue marlins (Makaira nigricans) are a large apex pelagic predator species within the 
family of Istiophorida (the billfish).  Their growth rate is among the fastest documented for a fish 
species and can reach weights in excess of one thousand pounds with females growing 
significantly larger than males (cite).  They display extensive movements within and across the 
Atlantic, as demonstrated from various tagging studies (cite).  Spawning takes place over a wide 
seasonal time range with a peak occurring in the summer months.  Little information is available 
on the larval and juvenile stages as they rarely occur in biological samples (Serafy et al. 2006). 

The International Commission for the Conservation of Atlantic Tuna (ICCAT) is 
responsible for the management of the Atlantic blue marlin.  Catches of blue marlin are 
predominately incidental from surface longline fisheries targeting tuna, however, there are also 
documented catches from near-shore gillnet fisheries (cite).   There is also a substantial targeted 
recreational fishery in North and South America as well as the Caribbean, with most of the fish 
being released.  The ICCAT manages the Atlantic as a single unit stock.  Traditionally the 
Atlantic blue marlin has been assessed using variations on stock-production models.  Generally, 
this is because very little data on this species has been available and these types of models are 
often times appropriate for data poor situations.  Despite the fact that tuna and billfishes are well 
known to be distributed in time and space based on oceanographic conditions, none of the above 
mentioned modeling platforms (and consequently the resulting assessments) explicitly takes into 
account fish habitats and their variability.   The longest observational data set available to assess 
blue marlin is the Japanese longline catch per unit effort (CPUE) series.  This data set begins in 
1956 and covers what is believed to be the beginning of any significant fishing mortality on the 
species.  No other data dates this far back, making the Japanese CPUE critical in determining 
stock status.  This index displays a marked decline from 1957 to 1980.  Coincident with this 
decline is the fact that the Japanese fleet gradually shifted their effort and gear configurations 
from targeting yellowfin tuna to targeting bigeye tuna.  It has been hypothesized that this shift in 
targeting by the Japanese fleet is at least partly responsible for the observed decline in CPUE 
during the 60’s and 70’s.   “Although making occasional forays down to greater depths and 
colder water temperatures, yellowfin tuna spend upwards of 90% of the time at depths where the 
water temperature is no more than 8 degrees C colder than surface layer temperature (Brill.  Col. 
Vol. Sci. Pap. ICCAT, 57(2): 142-161 (2005). Like yellowfin tuna, the marlins do occasionally 
make forays down to colder water temperatures, but spend upwards of 90% of the time at depths 
where the water temperature is are within 1° to 2° of the SSTs ((Hinton 2003?, IATTC blue 
marlin assessment).  In contrast, bigeye tuna regularly expose themselves to temperature changes 
of up 20 degrees C during their daily vertical movements” (Brill.  Col. Vol. Sci. Pap. ICCAT, 
57(2): 142-161 (2005).  While other explanations are possible, the decline in blue marlin CPUE 
by the Japanese fleet may be due, at least in part, to a change in the fleets blue marlin 
catchability.  
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SEAPODYM is a modeling approach that describes spatial population dynamics based 
on environmental relationships and the definition of species habitat (Lehodey et al. 2008). This 
model  also includes a parameter optimization framework based on likelihood approach (Senina 
et al., 2008) that has been applied to four Pacific tuna species (Lehodey and Senina 2009, 
WCPFC) and is used to investigate the impact of climate change on tuna (Lehodey et al 2010). 
The model is driven by environmental variables (temperature, currents, primary production, and 
dissolved oxygen concentration) between surface and a depth of 1000 m. Predicted feeding and 
spawning habitats are used to model the movement of fish based on a system of advection-
diffusion equations. 

This study is aimed at identifying the main sources of variability of Atlantic blue marlin 
habitats and spatial dynamics, through the combined use of a state of the art ecosystem model 
and movement data from electronic tags. The increased availability of recent data on the ocean 
scale movements for blue marlin using electronic tags (Prince and Goodyear 2006; Goodyear et 
al. 2008; and Prince et al. 2010) facilitated our species selection process.  The emphasis of the 
first phase of this  project was to put on defining the feeding habitat, based on mechanisms 
developed in the model for other billfish species, in order to recreate the key movement patterns 
of individuals, as described by archival tags. A review covering biology, ecology, fisheries and 
population structure of Atlantic blue marlin will be conducted to gather all the necessary 
information needed to parameterize the model SEAPODYM are to be conducted for the second 
phase of the study.    

 The longer term objective of the research was to produce a reliable spatial habitat map for a 
habitat based stock assessment and compare the biomass and mortality estimates to those coming 
from the current stock assessment model (Stock Synthesis) that does not consider habitat.  

 

Materials and methods 

Wildlife Computers (www.wildlidfecomputers.com, Redmond, WA, USA) electronic 
tags (popup satellite archival tags, PSATs) were used to monitor horizontal habitat use of blue 
marlin in the Atlantic and the Gulf of Mexico (Figure 1). In-water tagging techniques and 
associated equipment described in our previous work (Prince and Goodyear 2006, Prince et al. 
2010). The tags were programmed to sample depth (pressure), temperature and light once every 
30s. The depth and temperature records for were summarized by the on-board software into 
histograms at 6-hour bin intervals. We programmed the tag to summarize temperature bins 
starting at <12°C, then each successive 2°C interval ending with >32°C. Likewise, depth bins 
started at <-1 m, then successive intervals of 25 m until ending at depths >250 m. Eight profiles 
of depth and temperature (PDT) were also summarized by the on-board software at 6-hours 
intervals, which gave minimum and maximum temperatures for the shallowest and deepest 
depths, and for 6 depths between. Fish movement tracks were derived from light-level, 
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temperature, and bathymetric data. Light-level geolocation data were initially processed using 
the global positioning software WC-AMP (Wildlife Computers), and then applying a sea-surface 
temperature-corrected Kalman filter (Nielsen et al., 2006) to the light-level-derived locations. 
Finally, we used a custom bathymetry filter to relocate the points that were on land or in shallow 
water, based on 2 x 2 minute grid ETOP02 bathymetry data (Anon., 2006) and the daily 
maximum depth from the PSAT (Hoolihan and Luo, 2007).  The daily movement tracks were 
aggregated into 6 days average positions and its 95% confidence interval as inputs for the 
Seapodym model. We also calculated kernel density for the 6 day aggregated data according to 
the algorithms by Worton (1995) for comparison to model habitat distribution.  Kernel density 
values are cumulated from the highest to lowest density areas (Worton 1989).  Thus, the 25% 
contours represent areas of the top highest observed densities, while the 95% contours represent 
up to 95% density areas. 

We used SEAPODYM as the main tool for habitat modeling. This model was developed 
to simulate the spatial dynamics of tuna populations in the pelagic ecosystem. It uses bio-
physical environmental fields to simulate the upper trophic levels of marine ecosystem organized 
in two groups: the blue marlin and its prey species of the mid-trophic levels (i.e. micronekton). 
Modeling the habitat and vertical structure of micronekton distribution, as well as the age-
structured spatial dynamics of blue marlin  (through an advection-diffusion framework) is based 
on first biological principles, such as thermal habitat, oxygen tolerance, prey and predator 
interactions. The parameterization of these components defines a movement index with seasonal 
switching between feeding and spawning habitats, defining in turn the spatial dynamics of the 
target species (Lehodey et al 2010).  

The model domain covers the Atlantic Ocean and the Gulf of Mexico with a grid 
extending from 40 S to 65 N and 100 W to 20 E at 0.25 degree resolution (Figure 1). To drive 
the intermediate trophic functional groups, we used physical and biogeochemical forcing data 
sets derived from a coupled physical–biogeochemical model (Lehoedey et al 2010).   We used 
the physical reanalysis GLORYS (GLobal Ocean ReanalYsis and Simulations) that was provided 
by the French Groupe Mission Mercator Coriolis, at a resolution of ¼ deg x 6 days, and using 
data assimilation to provide higher realistic prediction. We used satellite derived primary 
production at the same resolution to run a simulation with the micronekton model (Lehodey et 
al., 2010), for the period 2002-2009. 

 
Results 

 
  We have compiled and analyzed 80 Popup Archival Transmitting (PAT) tags deployed 
on Atlantic blue marlin in the Atlantic from 2002 to 2004, and 43 PAT tags in the Gulf of 
Mexico from 2003 to 2008.  Of the 80 Atlantic tags, 46 tags were determined to contain useful 
data, and 39 of the Gulf of Mexico tags have good data.  The 6 day aggregated track locations 
and their 95% confidence intervals for all tags are shown in Figure 1. We have also compiled the 
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conventional tagging data base to analyze the distribution of conventionally tagged Atlantic blue 
marlin (Figure 2).  Depth distribution and temperature distribution of PAT tag data were also 
analyzed (Figure 3, 4).  The statistics of the temperatures and depths were summarized in Table 
1.  The mean temperatures for all tags were 27.59 oC, 28.22 oC, and 28.6 oC for day, twilight and 
night.  The overall mean temperature was 27.98 oC.  The mean depths for all tags were 53.6 m, 
33.0 m and 22.2 m for day, twilight and night.     

 
                  Table 1.  Statistics of temperatures and depths from PAT tags 

   Temperature   o C     Depth (m)    
   Mean (stdev)  Max  min  Mean (stdev)  Max 
Day  27.59 (1.98)  32  9.15  53.6 (50.4)  787 
Twilight  28.22 (1.64)  32  12.06  33.0 (38.6)  516 
Night  28.60 (1.05)  32  18.12  22.2 (25.9)  275 
Overall  27.98 (1.70)  32  9.15  40.0 (44.8)  787 

  
 
 Blue marlin kernel density distributions were estimated quarterly based on 6 day 
aggregated PAT tag track positions (Figure 5).   For January to March, most track locations were 
in the Gulf of Mexico with, and the core kernel (0-25%) is located in southern part of the gulf.  
For April to June, we have track locations in the Gulf of Mexico, around Bahamas, and east 
Atlantic, but the core kernel estimate is located in northern Gulf of Mexico and Bahamas.  From 
July to September, it has similar kernel distributions as the last quarter but more spread out to the 
Antilles.  In the last quarter, 50% kernel spread out to most of the Gulf of Mexico, and in the 
Atlantic the core kernel (0-25%) is located around Porto Rico with 95% kerned extended to the 
mouth of the Amazon River.  
 
 The distribution of blue marlin feeding habitat from Seapodym model simulation runs 
are shown in Figure 6 to Figure 13, and are summarized in Table 2.  In general, feeding habitat 
areas decreased as the optimal feeding temperature (Ta) increased (Figure 14) at both high 
quality habitat (>0.5) and low quality habitat (0.1) levels. Also, there were seasonal differences 
in feeding habitat areas for both habitat quality levels with smaller areas in first two quarters and 
greater areas in later two quarters.  The patterns of feeding habitat were very similar for the four 
optimal feeding temperature simulations at the DO threshold Ô=4.5 ml/L (Figure 6, 7, 8, and 9).  In 
the first quarter, the core feeding habitat (orange and red color in Figure 6) was located around 
the Antilles.  In the second quarter, the core feeding habitat extended to the east to the mid-
Atlantic ridge. In the third quarter, the core feeding habitats spread to east tropical east Atlantic, 
the Gulf of Mexico, and north Atlantic along the path of the Gulf Stream.  In the last quarter, the 
core habitat retreated back to the Antilles in west Atlantic but in the east Atlantic the core habitat 
area enlarged for the Ta=26.5 simulation (Figure 6).  Feeding habitat areas also decreased as the 
DO threshold level increased (Figure 10, 11, 12, 13 and 15) at both high quality habitat and low 
quality habitat levels.  However, the changes were much dramatic (average of 10 folds change) 
at high quality level (Figure 15A) than the changes (average of less than 1 fold) at the low 
quality level (Figure 15B).    
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 Table 2.  Areas  (in 1000 km2) of quarterly averaged habitat  indices at two  levels  ( >0.5 and 
>0.1)  from Seapodym model simulation runs.   Ta  is  the optimal  feeding  temperature  (oC), Ô  is  the DO 
threshold (ml/L), To is the optimal surface temperature for larval fish, and q1 to q4 indicate the quarters 
of the year. 
 
Feeding  Parameters     Feeding Habitat index >0.5     Feeding Habitat index >0.1 

habitat  Ta  Ô  q1  q2  q3  q4  q1  q2  q3  q4 

Figure 6  26.5  4.5  152  307  1096  1284  27675  27432  31951  32231 

Figure 7  27.5  4.5  80  238  643  183  19983  20908  26701  26000 

Figure 8  28.5  4.5  35  108  314  134  13240  13800  19880  18351 

Figure 9  29.5  4.5  14  35  56  68  6810  8378  12259  11513 

Figure 10  27.5  4.0  513  1346  2097  1753  24345  24496  28936  29548 

Figure 11  27.5  3.5  2226  3318  4152  4109  27141  26618  30522  32040 

Figure 12  27.5  3.0  3056  4249  5391  5290  28283  27730  31485  33611 

Figure 13  27.5  2.5  3400  4545  5858  5789  28661  28228  32086  34116 

Spawning                

Habitat  To        Spawning habitat index >0.5     Spawning habitat index >0.1 

Figure 16  27.25  NA  1396  2237  1715  1277  9836  11907  13070  13655 

Figure 17  27.75  NA  582  1474  1269  973  7273  9167  10485  10857 

Figure 18  28.25  NA  319  678  995  627  4283  6792  8130  8408 

Figure 19  28.75  NA  229  348  658  396  1426  3754  5549  5416 

  
 

In Seapodym model, spawning habitat index is a function of surface layer temperature, 
micronekton biomass in the surface layer and primary production converted to the wet weight of 
zooplankton.   We made simulation runs on four optimal surface layer temperatures (T0 = 27.25, 
27.75, 28.25 and 28.75 oC) for juvenile blue marlin (Figure 16 and 19).  The results were also 
summarized in Table 2.  Similar to feeding habitat index, the spawning habitat areas decreased 
as the optimal surface layer temperature (T0) for juvenile increased (Table 2, Figure 20) at both 
high quality habitat (>0.5) and low quality habitat (0.1) levels.  The pattern of blue marlin 
spawning habitat distribution is mostly limited from Florida to the east tip of South America in 
Brazil (Figure 16, 17, 18, 19) with small variations.  In the first quarter, the spawning habitat is 
limited to the south of Florida.  In the second quarter, it extends into the Gulf of Mexico and the 
Bahamas.  In the summer (third quarter), it extends further to southeast coast of the USA, north 
Atlantic along the path of the Gulf Stream, and around the Bermuda.  In the fall (fourth quarter), 
the spawning habitat is limited to the south of Cape Hatteras, USA.  
 
 Most of PAT tag locations were located inside the feeding habitat level >0.1 areas, 
especially for the third (76 to 98%) and fourth (38 to 99 %) quarters among all simulation runs 
(Table 3).  At an intermediate habitat quality level (>0.3), the percent overlaps were still over 
50% for about half of the simulations runs.  However, only small percentages (0 to 39%) of tag 
locations were overlapped with the high habitat quality level (>0.5).    The spawning habitat 
index had much less overlap (last two rows in Table 3) with tag locations compared with feeding 
habitat.   
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Table 3.  -Overlap of PAT tag locations with three levels (>0.1, >0.3, >0.5) of habitat quality.  Ta is the 
optimal feeding temperature (oC), Ô is the DO threshold (ml/L), To is the optimal surface temperature for 
larval fish, and q1 to q4 indicate the quarters of the year. The values are the percent of locations inside 
each habitat quality areas. 
 

Feeding  Parameters 
Feeding Habitat index 
>0.5    

Feeding Habitat index 
>0.3    

Feeding Habitat index 
>0.1    

Habitat  Ta  Ô  q1  q2  q3  q4  q1  q2  q3  q4  q1  q2  q3  q4 

Figure 6  26.5  4.5  0.0  1.0  13.3  2.2  10.6  9.3  64.4  25.1  85.1  91.2  97.2  90.1 

Figure 7  27.5  4.5  0.0  0.5  5.1  1.3  2.1  3.6  45.1  9.9  44.7  73.1  95.4  81.2 

Figure 8  28.5  4.5  0.0  0.0  1.6  1.3  0.0  2.1  15.0  4.9  25.5  23.3  89.9  66.8 

Figure 9  29.5  4.5  0.0  0.0  0.2  0.9  0.0  0.5  5.5  1.8  8.5  7.8  76.0  38.1 

Figure 10  27.5  4.0  0.0  1.0  17.8  5.4  10.6  7.3  74.1  42.6  70.2  81.9  97.2  92.4 

Figure 11  27.5  3.5  2.1  5.2  29.7  10.3  21.3  9.3  82.4  64.6  70.2  89.1  97.8  97.8 

Figure 12  27.5  3.0  4.3  5.2  37.0  13.0  25.5  11.4  84.4  71.3  72.3  91.2  97.8  98.7 

Figure 13  27.5  2.5  4.3  5.2  38.8  13.5  25.5  13.0  85.0  75.3  72.3  92.7  98.0  99.1 

Spawning                   

Habitat  To     Spawning habitat index >0.5  Spawning habitat index >0.3  Spawning habitat index >0.1 

Figure 16  27.25  NA  6.4  0.0  2.8  0.0  14.9  0.0  26.1  2.7  29.8  2.6  53.5  9.9 

Figure 17  27.75  NA  2.1  0.0  2.8  3.1  6.4  4.1  21.0  25.1  10.6  16.1  46.3  37.2 

Figure 18  28.25  NA  0.0  0.0  2.6  0.4  2.1  0.0  11.5  0.4  6.4  0.5  35.2  3.6 

Figure 19  28.75  NA  0.0  0.0  1.6  0.4  0.0  0.0  5.7  0.4  4.3  0.0  21.6  1.3 

  
 
  
 Since our PAT tag data is very limited, we also analyzed the ICCAT longline fishing 
fleet bycatch data on the blue marlin.  We plotted the total blue marlin bycatch by all countries 
over the map of dissolved oxygen (DO) concentration at 100 m depth (from World Ocean Atlas 
2005, Figure 21).  The large blue marlin bycatch are in the east Caribbean Sea and the coast of 
central Africa.  The intermediate bycatch are mostly inside the 3.5 ml/L DO contour line 
(defined as oxygen minimum zone, OMZ).  However, the large blue marlin bycatches are not 
necessary indication for the abundances of blue marlin rather the results of heavy fishing efforts 
towards targeted species (such as tuna, and swordfish) in those areas (Figure 22).  Since not all 
countries reported fishing efforts, it is not possible to estimate an accurate CPUE for the total 
bycatch, but a rather approximate CPUE.  This approximate CPUE (Figure 23) clearly indicates 
that the east Caribbean Sea and the water around the Antilles Islands are the best blue marlin 
habitat which corresponding exactly the same pattern from Seapodym model outs.    
 
 There is an alternative to get a more accurate estimate of CPUE, which is to use data 
from the country that has the best records in both catches and efforts.   The Japanese longline 
fishing fleet had good coverage for the tropical Atlantic. Thus, it should give good estimates of 
CPUE for the OMZ and the surrounding areas.  The seasonal Japanese longline blue marlin 
CPUE (Figure 24) distribution resembles well with the seasonal blue marlin feeding habitat 
simulated with 2.5 ml/L DO threshold (Figure 13) around OMZ. 
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Discussions 
 
 The results of Atlantic blue marlin habitat from Seapodym model simulations are 
generally matched well with the blue marlin track locations from PAT tagging studies and with 
the distribution patterns of longline fishing fleet CPUE in the Atlantic.  All results indicate that 
the best blue marlin feeding habitats are located in southern Caribbean Sea, around the islands of 
Antilles, and the nearby waters east of the Less Antilles. However, there are some high CPUE 
areas in the OMZ where model simulations indicated low habitat quality.  This discrepancy is 
mostly due to two factors.  First, the high blue marlin bycatch CPUEs in the OMZ are not 
necessary indication of high abundance of blue marlin because inside the OMZ the habitat is 
vertically compressed by the low DO concentration, which made the longline fishing gears more 
effective in catching the blue marlin in the narrow surface water which results in relatively 
higher CPUEs (Prince and Goodyear 2006, 2007; Prince et al 2010; Stramma et al 2011). Thus, 
if one uses blue marlin bycatch CPUEs as an indicator of habitat quality in that area, it will be 
over representing the quality of that habitat and thus estimates of abundance.  Second, the 
feeding habitat index from Seapodym model simulation is a vertically integrated habitat index 
and it assumes that blue marlin move through the water column the same way as they do outside 
the OMZ.  In reality, blue marlin inside the OMZ can only exist in the compressed surface layer 
(Figure 3) of the feeding habitat because most of its prey species inside the OMZ were also 
compressed to the surface layer.  Therefore, the Seapodym model simulations were 
underestimating the feeding habitat quality inside the OMZ.  

The data from our PAT tagging studies played a critical role in parameterizing the model.  
They provided detailed temperature information on the optimal feeding temperature, vertical 
distribution data for vertical movement in the model, and horizontal track positions for model 
calibration. The track position and feeding habitat overlap results (Table 3) show that, depending 
on simulation scenarios and seasons, as much as 99% of blue marlin track positions are found 
within the positive (>0.1) feeding habitat, suggesting that the model is performing well.  
However, one of the short fall of the PAT tag data is that they are mostly in northwestern 
Atlantic and the Gulf of Mexico and only a few in the east and south Atlantic (Figure 1), which 
made us less confident about the results in those areas.  Thus, it is clear that we need to conduct 
more PAT tagging studies in those areas in the next phase of the research. 

 The Seapodym model simulation results illustrate the relationship between change of DO 
threshold and blue marlin feeding habitat areas (Figure 15). There is a clear inverse relationship 
between DO threshold and size of available habitat, with lower thresholds resulting in larger 
feeding habitat areas (Figure 15).  This result is very important because the high performance 
physiology of blue marlin results in high oxygen demands and does not allow this species to 
adapt to low ambient levels DO.  Given that this species cannot tolerate low ambient levels of 
DO, if the OMZs are expanding due to global warming, feeding habitat areas for this species will 
be reduced.   This trend is confirmed in a number of recent papers using empirical data on 
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electronic tagging of blue marlin habitat use and DO levels in the ETA and WNA study areas 
(Prince and Goodyear 2006; Prince and Goodyear 2007; Prince et. al. 2010; & Stramma et al. 
2011). The most recent paper provides an estimated loss of the surface mixed layer habitat, over 
the last 50 years, totaling about 15% (Stramma et al. 2011).  

 Because differential habitat preference effectively increases fish concentrations within 
the preferred areas, the rate at which fish are caught as a result of one unit of effort will be 
different for the same gear when it is fished in less preferred habitat. In other words, blue marlin 
preferred habitat will have a higher density of blue marlin per cubic meter of water than will less 
preferred habitat.  Consequently, at an equivalent level of overall stock abundance, the CPUE in 
the preferred habitat will be higher than that of the less preferred habitat simply due to the 
differences in sampled density. This, in turn, presents implications when using catch per unit 
effort as an index of relative abundance.  If data from the two habitat types are inappropriately 
combined into one estimate of CPUE for the entire area, it will lead to an inaccurate estimate of 
abundance and catchability and, subsequently, inaccurate historic estimations of the index of 
relative abundance of the stock. Furthermore, the resulting index of relative abundance would be 
even more inaccurate if the preferred habitats were to either expand or contract over time. 
However, if the CPUE data is partitioned into multiple habitat types and a separate catchability 
can be reasonably assumed or estimated for each, the inaccuracy can be minimized. This 
suggests that CPUE standardization of data from the same fishery ⁄ gear ⁄ target from within 
highly preferred habitat and less preferred habitat should be handled separately.   

If the assessment model structure can replicate the spatial structure of the habitats, then 
separate or spatially interpreted indices can and should be applied to each area ⁄ habitat. There 
are already several assessment models that include specific spatial structure (catch statistical 
models such as CASAL, Stock Synthesis, Multifan-CL; and Age structure models like 
VPA2BOX) and others that attempt direct incorporation of the habitat environmental conditions 
(e.g., STATHBS). However, the main limitation of these applications is usually the transfer of 
fish between areas within the temporal stratification, although tagging experiments can provide 
information to infer movement rates.  

Alternatively, differential habitat issues can be addressed directly in the standardization 
of catch rates. In principle, the calculation of CPUE could be stratified spatially for habitats with 
similar preference classifications.  One possible approach would be to classify each of the 
ICCAT statistical grids into one of several categorical variables, with each category denoting 
varying degrees of habitat preference.  Grid assignments could be based directly on the 
SEAPODYM output for that particular grid and then a “grid effect” as a categorical variable 
could then be used in a GLM standardization with the model statement explicitly accounting for 
the habitat preference category.  In a similar manner, the habitat preference output from 
SEAPODYM could be used a continuous variable in the GLM standardization.  In this approach, 
the habitat preference for each ICCAT grids could be standardized to a maximum of one 
(denoting the highest preference) and each grid assigned a value from 0-1 based on its particular 
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preference rating.  As we have shown that the habitat preference rating for any particular grid 
changes with season, an interaction term would likely be advisable.  

The SEAPODYM model output could also be used as an aid in the design of time-area 
closures as a means to reduce fishing mortality.  By targeting the closure in the areas of the 
highest habitat preference the closures could be designed to minimize interactions with fishing 
gear within time and space.  Although this could also be done by merely examining the spatial 
characteristics of the catch (i.e. bycatch) data, using current habitat data would allow for a more 
“real time” approach to where gear should be set to best avoid interactions with blue marlin 
given the current oceanographic conditions.       

 

References: 

 
Anon (2006) US Department of Commerce, National Oceanic and Atmospheric Administration, 

National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2v2). 
http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.  

 
Goodyear, C Phillip; Luo, Jiangang; Prince, Eric D; Hoolihan, John P; Snodgrass, Derke; 

Orbesen, Eric S; Serafy, Joseph E. (2008).   Vertical habitat use of Atlantic blue marlin 
Makaira nigricans: interaction with pelagic longline gear.  Marine Ecology Progress 
Series [Mar. Ecol. Prog. Ser.]. Vol. 365, pp. 233-245. 2008. 

Hoolihan, J.P. and Luo, J. 2007.  Determining summer residence status and vertical habitat use 
of sailfish (Istiophorus platypterus) in the Arabian Gulf. ICES J. Mar. Sci. 64:1791–1799. 

 
Lehodey, P., Senina, I., Murtugudde, R., 2008. A spatial ecosystem and population dynamics model 

(SEAPODYM) – Modeling of tuna and tuna-like populations. Progress in Oceanography 78 (4), 
304-318. 

Lehodey P., Murtugudde R., Senina I. (2010). Bridging the gap from ocean models to population 
dynamics of large marine predators: a model of mid-trophic functional groups. Progress in 
Oceanography, 84: 69–84 

 
Lehodey P., Senina I., Sibert J., Bopp L, Calmettes B., Hampton J., Murtugudde R. (2010). 

Preliminary forecasts of population trends for Pacific bigeye tuna under the A2 IPCC 
scenario. Progress in Oceanography. 86: 302–315 

Lehodey P., Senina I., (2009). An update of recent developments and applications of the SEAPODYM 
model. Fifth regular session of the Scientific Committee of the Western and Central Pacific 
Fisheries Commission, 10–21 August 2009, Port Vila, Vanuatu, WCPFC-SC5-2009/EB-WP-10, 
44 pp.  http://www.wcpfc.int/meetings/2009/5th-regular-session-scientific-committee 

 



11 
 

Methot, R. D. 2009. Stock assessment: operational models in support of fisheries management. In: The 
Future of Fishery Science in North America, pp. 137–165. Ed. by R. J. Beamish, and B. J. 
Rothschild. Fish and Fisheries Series, 31. 736 pp 

 
Nielsen, A., Bigelow, K.A., Musyl, M.K. and Sibert, J.R. 2006.  Improving light-based 

geolocation by including sea surface temperature. Fish. Oceanogr. 15:314–325. 
 
Prince, E. D., and C. P. Goodyear. 2006. Hypoxia-based habitat compression of tropical pelagic 

fishes. Fisheries Oceanography. 15(6): 451-464. 
 
Prince, E. D., and C. P. Gooyear. 2007.  Consequencies of ocean scale hypoxia constrained 

habitat for tropical pelagic fishes.  Gulf and Caribbean. Research, 19(2): 17-20.  

Prince, E. D., J. Lou, C. P. Goodyear, J. P. Hoolihan, D. Snodgrass, E. S. Orbesen, J. E. Serafy, 
M. Ortiz, and M. J. Schirripa. 2010. Ocean scale hypoxia-based habitat compression of 
Atlantic istiophorid billfishes. Fisheries Oceanography. 19:448-462. 

 
Senina, I., Sibert, J., Lehodey, P., 2008. Parameter estimation for basin-scale ecosystem-linked population 

models of large pelagic predators: application to skipjack tuna. Progress in Oceanography 78 (4), 
319–335 

Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W. 
R., et al. (2011). Expansion of oxygen minimum zones may reduce available habitat for 
tropical pelagic fishes. Nature Climate Change, 2(1), 33-37. Nature Publishing Group. 
doi:10.1038/nclimate1304 

 
 

 
  



12 
 

 
Figure 1.  Six day aggregated blue marlin location (red dots) and 95% confidence ellipses (light 
grey ellipse) based on PAT tag data.  
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Figure 2.  Release locations of conventionally tagged Atlantic blue marlin. 
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Figure 3.  Depth distribution histogram of Atlantic blue marlin by day (light bar), twilight (grey 
bar), and night (dark bar) for East Atlantic (upper panels) and Northwest Atlantic based on data 
from PAT tags.  
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Figure 4.  Temperature distribution histogram of Atlantic blue marlin by day (light bar), twilight 
(grey bar), and night (dark bar) for East Atlantic (upper panels) and Northwest Atlantic based on 
data from PAT tags.  
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Figure 5.  Quarterly kernel estimate of blue marlin distributions based satellite tag data.  
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Figure 6.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 26.5 oC and DO threshold Ô =4.5 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 7.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 27.5 oC and DO threshold Ô =4.5 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 8.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 28.5 oC and DO threshold Ô =4.5 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 9.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 29.5 oC and DO threshold Ô =4.5 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 10.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 27.5 oC and DO threshold Ô=4.0 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 11.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 27.5 oC and DO threshold Ô=3.5 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 12.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 27.5 oC and DO threshold Ô=3.0 ml/L, 
over imposed with corresponding tag positions (black +). 
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Figure 13.  Seasonal average distribution of blue marlin feeding habitats from SEAPODYM 
model simulation of optimal feeding temperature Ta= 27.5 oC and DO threshold Ô =2.5 ml/L, 
over imposed with corresponding tag positions (black +).  
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Figure 14.   Areas (in 1000 km2) of quarterly averaged feeding habitat indices as the function of 
optimal feeding temperature (Ta) at DO threshold Ô =4.5 ml/L from Seapodym model simulation 
runs for habitat quality level >0.5 (A) and level >0.1 (B). 

 

    



26 
 

Figure 15.   Areas (in 1000 km2) of quarterly averaged feeding habitat indices as the function of 
DO threshold (Ô) at the optimal feeding temperature (Ta = 27.5 oC) from Seapodym model 
simulation runs for habitat quality level >0.5 (A) and level >0.1 (B). 
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Figure 16.  Seasonal average distribution of blue marlin spawning habitats from SEAPODYM 
model simulation of optimal spawning temperature T0= 27.25 oC, over imposed with 
corresponding tag positions (black +). 
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Figure 17.  Seasonal average distribution of blue marlin spawning habitats from SEAPODYM 
model simulation of optimal spawning temperature T0= 27.75 oC, over imposed with 
corresponding tag positions (black +). 
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Figure 18.  Seasonal average distribution of blue marlin spawning habitats from SEAPODYM 
model simulation of optimal spawning temperature T0= 28.25 oC, over imposed with 
corresponding tag positions (black +). 
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Figure 19.  Seasonal average distribution of blue marlin spawning habitats from SEAPODYM 
model simulation of optimal spawning temperature T0= 28.75 oC, over imposed with 
corresponding tag positions (black +). 
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Figure 20.   Areas (in 1000 km2) of quarterly averaged feeding habitat indices as the function of 
optimal surface temperature (T0) for blue marlin juvenile from Seapodym model simulation runs 
for habitat quality level >0.5 (A) and level >0.1 (B). 
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Figure 21.  Map of dissolved oxygen concentration (ml/L) at 100 m depth (from World Ocean 
Atlas 2005) overlaying total blue marlin bycatch (yellow circles, in metric ton) of all countries in 
the Atlantic from 2000 to 2008.  The white line is the 3.5 ml/L DO contour.   
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Figure 22.  Map of dissolved oxygen concentration (ml/L) at 100 m depth (from World Ocean 
Atlas 2005) overlaying longline fishing efforts (million hooks, yellow circles) by most of 
countries in the Atlantic from 2000 to 2008.  The white line is the 3.5 ml/L DO contour.   
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Figure 23.  Map of dissolved oxygen concentration (ml/L) at 100 m depth (from World Ocean 
Atlas 2005) overlaying all country CPUE (mt/mil hooks, yellow circles) in the Atlantic from 
2000 to 2008.  The white line is the 3.5 ml/L DO contour.   
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Figure 24.  Seasonal average distribution of blue marlin bycatch CPUE (#/10000 hooks) by 
Japanese longline fishing fleet from 2000 to 2008. 

 


